Skip to main content

Pharmaceuticals in the Environment — Scope of the Book and Introduction

  • Chapter
Pharmaceuticals in the Environment

Abstract

Pharmaceutically active compounds are complex molecules with different functionalities, physicochemical and biological properties. They are developed and used because of their more or less specific biological activity and are most notably characterised by their ionic nature. Their molecular weights range typically from 300 to 1 000. Under environmental conditions molecules can be neutral, cationic, anionic, or zwitterionic. They also often have basic or acidic functionalities. Pharmaceuticals can be classified according to their effects, but also “crosswise” according to their chemical structure. Normally, pharmaceuticals and disinfectants are classified according to their therapeutical purpose (e.g. antibiotics, analgesics, antineoplastics, anti-inflammatory substances, antibiotics, antihistaminic agents, contrast media, etc.). Classification according to chemical structure is used mainly for the sub-groups of the active substances, e.g. within a group of antibiotics such as β-lactams, cephalosporins, penicillins or quinolones. In such cases, some of the compounds can be treated as groups and one or the other compound can be used as a general example for this group. A closely related chemical structure may be accompanied by an identical or at least a similar mode of action (e.g. antibiotics). However, as the example of antineoplastics shows, it might also be very different: alkylating, antimetabolic, mitosis inhibiting or intercalating substances belong to different classes of chemicals. In other words, compared to most bulk chemicals, pharmaceutically active compounds are often complex molecules with special properties e.g. dependence of log K ow, on pH (see Chap. 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aherne GW, Hardcastle A, Nield AH (1990) Cytotoxic drugs and the aquatic environment. Estimation of bleomycin in river and water samples. J Pharm Pharmacol 42:741–742

    Google Scholar 

  2. Al-Ahmad A, Daschner FD, Kümmerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfametohoxazole and inhibition of wastewater bacteria. Arch Environ Cont Toxicol 37: 158–163

    Google Scholar 

  3. Alexy R, Kumpel T, Dörner M, Kümmerer K (2001) Effects of antibiotics against environmental bacteria studied with simple tests. Proceedings of the 11th Annual Meeting of SETAC Europe, Madrid, 6-ii May

    Google Scholar 

  4. Backhaus T, Grimme LH (1999) The toxicity of antibiotic agents to the luminescent bacterium Vi brio fischeri. Chemosphere 38:3291–3301

    Google Scholar 

  5. Boxall ABA, Kolpin D, Halling-Sorensen B, Tolls J (2003a) Are veterinary medicines causing environmental risks. Environ Sci Technol 36: 286A - 294A

    Article  Google Scholar 

  6. Boxall ABA, Fogg LA, Kay P, Blackwell PA, Pemberton EJ, Croxford A (20o3b) Veterinary medicines in the environment. Rev Environ Contam Toxicol 180: 1–91

    Google Scholar 

  7. Buerge IJ, Poiger T, Muller MD, Buser HR (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37: 691–700

    Article  CAS  Google Scholar 

  8. Cairns J jr, Mount DI (1992) Aquatic toxicology. Envrion Sci Technol 24: 154–161

    Google Scholar 

  9. Christensen FM (1998) Pharmaceuticals in the environment–a human risk? Reg Tox Pharm 28:212–221 Drewes JE, Heberer T, Reddersen K (2002) Fate of pharmaceuticals during indirect potable use. Wat Sci Technol 46: 73–8o

    Google Scholar 

  10. EG (1993) Richtlinie 93/39/EWG des Rates vom 14. Juni 1993 zur Änderung der Richtlinien 65/65/EWG, 75/318/EWG and 75/319/EWG betreffend Arzneimittel. Amtsblatt der Europäischen Gemeinschaften Nr. L 214/22 vom 24.08. 93

    Google Scholar 

  11. Ferber D (2003) Antibiotic resistance. WHO advices kicking the livestock antibiotic habit. Science 301:1027 Greiner P, Rönnefahrt I (2002) Management of environmental risks in the life cycle of pharmaceuticals.

    Google Scholar 

  12. European Conference on Human and Veterinary Pharmaceuticals in the Environment, Lyon

    Google Scholar 

  13. April

    Google Scholar 

  14. Halling-Sorensen B (2000a) Algal toxicity of antibacterial agents used in intensive fish farming. Chemosphere 40:731–739

    Google Scholar 

  15. Halling-Sorensen B (2000b) Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by anti-bacterial agents. Arch Environ Contam Toxicol 40: 451–46o

    Article  Google Scholar 

  16. Halling-Sorensen B, Nilesen N, Lanzky PF, Ingerslev F, Holten-Lützhoft, Jorgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment - a review. Chemosphere 36:357–393

    Google Scholar 

  17. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131: 5–17

    Article  CAS  Google Scholar 

  18. Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Tot Environ 225: 109–118

    Google Scholar 

  19. Holm JV, Rugge K, Bjerg PL, Christensen TH (1995) Occurrence and distribution of pharmaceutical organic compounds in the ground water down gradient of a landfill (Grinsted, Denmark). Envrin Sci Tech 29: 415–1420

    Google Scholar 

  20. Holten-Lützhoft HC, Halling-Sorensen B, Jorgensen SE (1999) Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contam Toxicol 36: 1–6

    Google Scholar 

  21. Kiffmeyer T (2003) Minimisation of human drug input by oxidative treatment of toilet effluents from hospital wards. European Conference on Human and Veterinary Pharmaceuticals in the Environment, Lyon, 14–16 April

    Google Scholar 

  22. Kümmerer K (2001a) Drugs, diagnostic agents and disinfectants in waste water and water - a review. Chemosphere 45:957–969

    Google Scholar 

  23. Kümmerer K (ed) (tomb) Pharmaceuticals in the environment. Sources, fate, effects and risks, ist edn. Springer-Verlag, Heidelberg Berlin

    Google Scholar 

  24. Kümmerer K, Al-Ahmad A (1998) The cancer risk for humans related to cyclophoshamide and ifosfamide excretions emitted into surface water via hospital effluents. Cancer Det Prey 22 (Suppl 1): 136

    Google Scholar 

  25. Kümmerer K, Al-Ahmad A (1999). Epirubicinhydrochlorid in der aquatischen Umwelt - Biologische Abbaubarkeit and Wirkung auf aquatische Bakterien. 7. Nordwestdeutscher Zytostatika-Workshop, Hamburg-Harburg, 29.-31. 01. 1999 (Proceedings, pp so-11)

    Google Scholar 

  26. Kümmerer K, Held M (1997) Die Umweltwissenschaften im Kontext von Zeit–Begriffe unter dem Aspekt der Zeit. UWSF–Z Umweltchem Ökotox 9: 169–178

    Article  Google Scholar 

  27. Kümmerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluents. Clin Microbiol Inf 9: 1203–1214

    Article  Google Scholar 

  28. Kümmerer K, Al-Ahmad A, Mersch-Sundermann V (moo) Biodegradability of some antibiotics, elimination of their genotoxicity and affection of waste water bacteria in a simple test. Chemosphere 40: 701–710

    Google Scholar 

  29. Kümmerer K, Alexy R, Hüttig J (2004) Standardized tests fail to assess the effects of antibiotics against environmental bacteria because of delayed effects. Wat Res 38: 2111–2116

    Article  Google Scholar 

  30. Möller P, Dulski P, Bau M, Knappe A, Pekdeger A, Sommer-von Jarmerasted C (200o) Anthropogenic gadolinium as a conservative tracer in hydrology. J Geochem Explor 69/70:409–414

    Google Scholar 

  31. Norpoth K, Nehrkorn A, Kirchner M, Holsen H, Teipel H (1973) Investigations on the problem of solubilityand stability of steroid ovulation inhibitors in water, waste water and activated sludge. Zbl Hyg I Abt Orig B 156: 500–511

    CAS  Google Scholar 

  32. Ohlsen K, Ziebuhr W, Koller K, Hell W, Wichelhaus TA, Hacker J (1998) Effects of sub inhibitory concentrations of antibiotics an alpha-toxon (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother 42: 2817–2823

    CAS  Google Scholar 

  33. Ohlsen K, Werner G, Ternes T, Ziebuhr W, Witte W, Hacker J (2oo4) Impact of antibiotics on conjugational resistance in gene transfer in Staphylococcus aureus in sewage. Environ Microbiol (to be published)

    Google Scholar 

  34. Qiting J, Xiheng Z (1988) Combination process of anaerobic digestion and ozonization technology for treating wastewater from antibiotics production. Wat Treat 3: 285–291

    Google Scholar 

  35. Ravina M, Campanella L, Kiwi J (2002) Accelerated mineralization of the drug diclofenac via Fenton reactions in a concentric photo-reactor. Wat Res 363553–356o

    Google Scholar 

  36. Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the aquatic environment. J Pharm Pharmacol 37: 1–12

    Article  CAS  Google Scholar 

  37. Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) Pharmaceuticals in groundwaters - analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany. J Chromatogr A 938a99–210

    Google Scholar 

  38. Salyers AA, Shoemaker NB, Stevens AM, Li LY (1995) Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbial Rev 59: 579–590

    CAS  Google Scholar 

  39. Sattelberger S (1999) Arzneimittelrückstände in der Umwelt, Bestandsaufnahme and Problemstellung. Report des Umweltbundesamtes Osterreich, Wien

    Google Scholar 

  40. Schröder HF (2002) Mass spectrometric monitoring of the degradation and elimination efficiency for hardly eliminable and hardly biodegradable polar compounds by membrane bioreactors. Wat Sci Technol 46: 57–64

    Google Scholar 

  41. Stan H-J, Linkerhägner M (1992) Indentifizierung von 2-(4-Chlorphenoxy)-2-methylpropionsäure im Grundwasser mittels Kapillargaschromatographie mit Atomemissionsdetektion and Massenspektrometrie. Vom Wasser 79:85-88

    Google Scholar 

  42. Tabak HH, Bunch RL (197o) Steroid hormones as water pollutants. In: Developments in Industrial Microbiology, Washington, pp 367–376

    Google Scholar 

  43. Ternes TA (1998) Occurence of drugs in German sewage treatment plants and rivers. Wat Res 32: 3245–3260

    Google Scholar 

  44. Ternes TA, Stuber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Wat Res 37:1976–1982

    Google Scholar 

  45. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils–a review. J Plant Nutr Soil Sci 166: 145–167

    Article  CAS  Google Scholar 

  46. Zwiener C, Gremm TJ, Frimmel FH (2001) Pharmaceutical residues in the aquatic environment and their significance for drinking water production. In: Kümmerer K (ed) Pharmaceuticals in the environment. Sources, fate, effects and risks, ist edn. Springer-Verlag, Heidelberg Berlin, pp 81–89

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kümmerer, K. (2004). Pharmaceuticals in the Environment — Scope of the Book and Introduction. In: Kümmerer, K. (eds) Pharmaceuticals in the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09259-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09259-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09261-3

  • Online ISBN: 978-3-662-09259-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics