Skip to main content

The Use of Protein—protein Interaction Networks for Genome Wide Protein Function Comparisons and Predictions

  • Chapter
Methods in Proteome and Protein Analysis

Part of the book series: Principles and Practice ((PRINCIPLES))

Abstract

The concept of protein function is widely used by biologists. However, the means of the concept and its understanding can vary largely depending on the functional level under consideration (molecular, cellular, physiological, etc.) Function is therefore a complex notion and the development of efficient ways of representing function which can be computer-tractable is presently the goal of many research efforts. Moreover, genomic studies and new high-throughput methods of the post-genomic era provide the opportunity to shed a new light on the concept of protein function. Among them, the analysis of large protein—protein networks will permit the emergence of a more integrated view of protein function.

In this context, we have proposed a new method for protein function comparison and classification which, unlike usual methods based on sequence homology, permits the definition of functional classes of protein based solely on the identity of their interacting partners, thus giving access for the first time to function at the cellular level. This method, named PRODISTIN for Protein Distance based on Interactions, has been first applied to the Saccharomyces cerevisiae interactome (proteome-wide protein—protein interactions). An example of a classification/comparison is shown and discussed for a subset of S. cerevisiae proteins, accounting for 10% of its proteome (600 proteins). Functional classification trees have also been made for the Helicobacter pylori proteome, confirming the generic aspect of the method. We demonstrated that the method is robust (biologically and statistically) and can be used to predict function for unknown proteins and groups of proteins.

Finally, the potential use of protein—protein interaction data and of the PRODISTIN method in structural biology projects is presented and discussed. In the future, this method could also be potentially applied to other types of networks such as transcriptional and genetic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29

    Google Scholar 

  2. Blaschke C, Hirschman L, Valencia A (2002) Information extraction in molecular biology. Brief Bioinform 3: 154–165

    Article  PubMed  CAS  Google Scholar 

  3. Breitkreutz BJ, Stark C, Tyers M (2003) Osprey: a network visualization system. Genome Biol 4:R22 122 Christine Brun et al.

    Google Scholar 

  4. Brun C, Guénoche A, Jacq B (2003) Approach of the functional evolution of duplicated genes in Saccharomyces cerevisiae using a new classification method based on protein-protein interaction data. Journal of Structural and Functional Genomics 3: 213–224

    Article  PubMed  CAS  Google Scholar 

  5. Brun C, Wojcik J, Guénoche A, Jacq B (2002) Bioinformatic study of interaction networks: PRODISTIN, a new method for a functionnal classification of proteins. In: Nicolas J, Thermes C (eds) Journées Ouvertes Biologie Informatique Mathématiques (JOBIM’2002). Saint Malo, France, p 171–182

    Google Scholar 

  6. Chakrabarti P, Janin J (2002) Dissecting protein-protein recognition sites. Proteins 47: 334–343

    Article  PubMed  CAS  Google Scholar 

  7. Costanzo MC, Crawford ME, Hirschman JE, Kranz JE, Olsen P, Robertson LS, Skrzypek MS, Braun BR, Hopkins KL, Kondu P, Lengieza C, Lew-Smith JE, Tillberg M, Garrels JI (2001) YPD, Pombe PD and Worm PD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res 29: 75–79

    Google Scholar 

  8. Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23: 324–328

    Article  PubMed  CAS  Google Scholar 

  9. de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9: 67–103

    Article  PubMed  Google Scholar 

  10. Devos D, Valencia A (2000) Practical limits of function prediction. Proteins 41: 98–107

    Article  PubMed  CAS  Google Scholar 

  11. Drewes G, Bouwmeester T (2003) Global approaches to protein-protein interactions. Curr Opin Cell Biol 15: 199–205

    Article  PubMed  CAS  Google Scholar 

  12. Elion EA (2001) The Ste5p scaffold. J Cell Sci 114: 3967–3978

    PubMed  CAS  Google Scholar 

  13. Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402: 86–90

    Article  PubMed  CAS  Google Scholar 

  14. Enright AJ, Ouzounis CA (2001) BioLayout-an automatic graph layout algorithm for similarity visualization. Bioinformatics 17: 853–854

    Article  PubMed  CAS  Google Scholar 

  15. Galperin MY, Koonin EV (2000) Who’s your neighbor? New computational approaches for functional genomics. Nat Biotechnol 18: 609–613

    Article  PubMed  CAS  Google Scholar 

  16. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141–147

    Article  PubMed  CAS  Google Scholar 

  17. Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha-and gamma-tubulin. Embo J 17: 952–966

    Article  PubMed  CAS  Google Scholar 

  18. Hannon GJ (2002) RNA interference. Nature 418: 244–251

    Article  PubMed  CAS  Google Scholar 

  19. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415: 180–183

    Article  PubMed  CAS  Google Scholar 

  20. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98: 4569–4574

    Article  PubMed  CAS  Google Scholar 

  21. Jacq B (2001) Protein function from the perspective of molecular interactions and genetic networks. Brief Bioinform 2: 38–50

    Article  PubMed  CAS  Google Scholar 

  22. Karp PD (2000) An ontology for biological function based on molecular interactions. Bioinformatics 16: 269–285

    Article  PubMed  CAS  Google Scholar 

  23. Karp PD, Riley M, Paley SM, Pellegrini-Toole A, Krummenacker M (1999) Eco Cyc: encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res 27: 55–58

    Article  PubMed  CAS  Google Scholar 

  24. Kolchanov NA, Nedosekina EA, Ananko EA, Likhoshvai VA, Podkolodny NL, Ratushny AV, Stepanenko IL, Podkolodnaya OA, Ignatieva EV, Matushkin YG (2002) GeneNet database: description and modeling of gene networks. In Silico Biol 2: 97–110

    Google Scholar 

  25. Lan N, Montelione GT, Gerstein M (2003) Ontologies for proteomics: towards a systematic definition of structure and function that scales to the genome level. Curr Opin Chem Biol 7: 44–54

    Article  PubMed  CAS  Google Scholar 

  26. Legrain P, Wojcik J, Gauthier JM (2001) Protein-protein interaction maps: a lead towards cellular functions. Trends Genet 17: 346–352

    Article  PubMed  CAS  Google Scholar 

  27. Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285: 751–753

    Article  PubMed  CAS  Google Scholar 

  28. Marcotte EM, Pellegrini M, Thompson MJ,Yeates TO, Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402: 83–86

    CAS  Google Scholar 

  29. Mewes HW, Frishman D, Guldener U, Mannhaupt G, Mayer K, Mokrejs M, Morgenstern B, Munsterkotter M, Rudd S, Weil B (2002) MIPS: a database for genomes and protein sequences. Nucleic Acids Res 30: 31–34

    Article  PubMed  CAS  Google Scholar 

  30. Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 96: 2896–2901

    Article  PubMed  CAS  Google Scholar 

  31. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 96: 4285–4288

    Article  PubMed  CAS  Google Scholar 

  32. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24: 218–229

    Article  PubMed  CAS  Google Scholar 

  33. Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, Lenzen G, Petel F, Wojcik J, Schachter V, Chemama Y, Labigne A, Legrain P (2001) The protein-protein interaction map of Helicobacter pylori. Nature 409: 211–215

    Article  PubMed  CAS  Google Scholar 

  34. Sanchez C, Lachaize C, Janody F, Bellon B, Roder L, Euzenat J, Rechenmann F, Jacq B (1999) Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an Internet database. Nucleic Acids Res 27: 89–94

    Article  PubMed  CAS  Google Scholar 

  35. Schachter V (2002) Protein-interaction networks: from experiments to analysis. Drug Discov Today 7: S48–54

    Article  PubMed  CAS  Google Scholar 

  36. Shi Y (2003) Mammalian RNAi for the masses. Trends Genet 19: 9–12

    Article  PubMed  Google Scholar 

  37. Smith GR, Sternberg MJ (2002) Prediction of protein-protein interactions by docking methods. Curr Opin Struct Biol 12: 28–35

    Article  PubMed  Google Scholar 

  38. Sprinzak E, Margalit H (2001) Correlated sequence-signatures as markers of protein-protein interaction. J Mol Biol 311: 681–692

    Article  PubMed  CAS  Google Scholar 

  39. Sprinzak E, Sattath S, Margalit H (2003) How Reliable are Experimental Protein-protein Interaction Data? J Mol Biol 327: 919–923

    Article  PubMed  CAS  Google Scholar 

  40. Tamames J, Casari G, Ouzounis C, Valencia A (1997) Conserved clusters of functionally related genes in two bacterial genomes. J Mol Evol 44: 66–73

    Article  PubMed  CAS  Google Scholar 

  41. Tedford K, Kim S, Sa D, Stevens K, Tyers M (1997) Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr Biol 7: 228–238

    Article  PubMed  CAS  Google Scholar 

  42. Tyers M, Mann M (2003) From genomics to proteomics. Nature 422: 193–197

    Article  PubMed  CAS  Google Scholar 

  43. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403: 623–627

    Article  PubMed  CAS  Google Scholar 

  44. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417: 399–403

    Article  Google Scholar 

  45. Wu C, Leberer E, Thomas DY, Whiteway M (1999) Functional characterization of the interaction of Ste50p with Stellp MAPKKK in Saccharomyces cerevisiae. Mol Biol Cell 10: 2425–2440

    PubMed  CAS  Google Scholar 

  46. Xu BE, Skowronek KR, Kurjan J (2001) The N terminus of Saccharomyces cerevisiae Sst2p plays an RGS-domain-independent, Mpt5p-dependent role in recovery from pheromone arrest. Genetics 159: 1559–1571

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brun, C., Baudot, A., Guénoche, A., Jacq, B. (2004). The Use of Protein—protein Interaction Networks for Genome Wide Protein Function Comparisons and Predictions. In: Kamp, R.M., Calvete, J.J., Choli-Papadopoulou, T. (eds) Methods in Proteome and Protein Analysis. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08722-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08722-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05779-3

  • Online ISBN: 978-3-662-08722-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics