Skip to main content

Infections, Inflammation and Cancer: Roles of Reactive Oxygen and Nitrogen Species

  • Chapter
Mechanisms in Carcinogenesis and Cancer Prevention

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 156))

Abstract

It has been estimated that about 16% (1,450,000 cases) of the worldwide incidence of cancer in 1990 can be attributed to infection with either the hepatitis B and C viruses, the human papilloma viruses, Epstein-Barr virus, human T-cell lymphotropic virus I, human immunodeficiency virus (HIV), the bacterium Helicobacter pylori, schistosomes or liver flukes (Pisani et al. 1997). This estimate was made following the evaluations of the IARC monographs program, which has evaluated several infectious agents as carcinogenic to humans (IARC Working Group on the Evaluation of Carcinogenic Risks to Humans 1994a,b, 1995, 1996, 1997). Table 1 summarizes some human cancers for which infection and inflammation have been associated with increased risk. Chronic infection by a variety of viruses, bacteria, or parasites and tissue inflammation such as gastritis and hepatitis, which are often caused by chronic infection, are recognized risk factors for human cancers at various sites. Moreover, the chronic inflammation induced by chemical and physical agents such as cigarette smoke and asbestos and autoimmune and inflammatory reactions of uncertain etiology (e.g., pernicious anemia, ulcerative colitis, pancreatitis, etc.) are also associated with an increased risk of cancer. Thus a significant fraction of the global cancer burden is attributable to chronic infection and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adak S, Wang Q, Stuehr DJ (2000) Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase: Implications for mechanism. J Biol Chem 275:33554–33561

    Article  PubMed  CAS  Google Scholar 

  • Akasaka S, Yamamoto K (1995) Mutational specificity of the ferrous ion in a supF gene of Escherichia coli. Biochem Biophys Res Commun 213:74–80

    Article  PubMed  CAS  Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  PubMed  CAS  Google Scholar 

  • Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW, Stuehr DJ (2001) Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci USA 98:12056–12061

    Article  PubMed  CAS  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–37

    PubMed  CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  PubMed  CAS  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  PubMed  CAS  Google Scholar 

  • Byun J, Mueller DM, Heinecke JW (1999) 8-Nitro-2’-deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase-hydrogen peroxide-nitrite system of activated human phagocytes. Biochemistry 38:2590–2600

    Article  PubMed  CAS  Google Scholar 

  • Calmels S, Hainaut P, Ohshima H (1997) Nitric oxide induces conformational and functional modifications of wild-type p53 tumor suppressor protein. Cancer Res 57:3365–3369

    PubMed  CAS  Google Scholar 

  • Chazotte-Aubert L, Hainaut P, Ohshima H (2000) Nitric oxide nitrates tyrosine residues of tumor-suppressor p53 protein in MCF-7 cells. Biochem Biophys Res Commun 267:609–613

    Article  PubMed  CAS  Google Scholar 

  • Chazotte-Aubert L, Oikawa S, Gilibert I, Bianchini F, Kawanishi S, Ohshima H (1999) Cytotoxicity and site-specific DNA damage induced by nitroxyl anion (NO”) in the presence of hydrogen peroxide. Implications for various pathophysiological conditions. J Biol Chem 274:20909–20915

    Article  PubMed  CAS  Google Scholar 

  • Christen S, Hagen TM, Shigenaga MK, Ames BN (1999) Chronic Inflammation, Mutation, and Cancer. In: Parsonnet J (ed) Microbes and Malignancy. Infection as a cause of human cancers. Oxford University Press, New York, Oxford, p 35

    Google Scholar 

  • Cobbs CS, Samanta M, Harkins LE, Gillespie GY, Merrick BA, MacMillan-Crow LA (2001) Evidence for Peroxynitrite-Mediated Modifications to p53 in Human Gliomas: Possible Functional Consequences. Arch Biochem Biophys 394:167–172

    Article  PubMed  CAS  Google Scholar 

  • Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232:3–14

    Article  PubMed  CAS  Google Scholar 

  • Davis KL, Martin E, Turko IV, Murad F (2001) Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 41:203–36

    Article  PubMed  CAS  Google Scholar 

  • Dizdaroglu M (1994) Chemical determination of oxidative DNA damage by gas chromatography-mass spectrometry. Methods Enzymol 234:3–16

    Article  PubMed  CAS  Google Scholar 

  • Douki T, Cadet J (1996) Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Radic Res 24:369–380

    Article  PubMed  CAS  Google Scholar 

  • Ducrocq C, Blanchard B, Pignatelli B, Ohshima H (1999) Peroxynitrite: an endogenous oxidizing and nitrating agent. Cell Mol Life Sci 55:1068–1077

    Article  PubMed  CAS  Google Scholar 

  • Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397

    Article  PubMed  CAS  Google Scholar 

  • El Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N, Lanyon G, Martin M, Fraumeni JF, Jr., Rabkin CS (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404:398–402

    Article  PubMed  Google Scholar 

  • Felley Bosco E, Mirkovitch J, Ambs S, Mace K, Pfeifer A, Keefer LK, Harris CC (1995) Nitric oxide and ethylnitrosourea: relative mutagenicity in the p53 tumor suppressor and hypoxanthine-phosphoribosyltransferase genes. Carcinogenesis 16:2069–2074

    Article  PubMed  CAS  Google Scholar 

  • Gal A, Wogan GN (1996) Mutagenesis associated with nitric oxide production in transgenic SJL mice. Proc Natl Acad Sci USA 93:15102–15107

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cardena G, Folkman J (1998) Is there a role for nitric oxide in tumor angio-genesis? J Natl Cancer Inst 90:560–561

    Article  PubMed  CAS  Google Scholar 

  • Goodwin DC, Landino LM, Marnett LJ (1999) Effects of nitric oxide and nitric oxide-derived species on prostaglandin endoperoxide synthase and prostaglandin biosynthesis. FASEB J 13:1121–1136

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hazen SL, Heinecke JW (1997) 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 99:2075–2081

    Article  PubMed  CAS  Google Scholar 

  • Hazen SL, Hsu FF, Mueller DM, Crowley JR, Heinecke JW (1996) Human neutrophils employ chlorine gas as an oxidant during phagocytosis. J Clin Invest 98:1283–1289

    Article  PubMed  CAS  Google Scholar 

  • Hegardt P, Widegren B, Sjogren HO (2000) Nitric-oxide-dependent systemic immunosuppression in animals with progressively growing malignant gliomas. Cell Immunol 200:116–127

    Article  PubMed  CAS  Google Scholar 

  • Heinecke JW, Li W, Daehnke HL, Goldstein JA (1993) Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J Biol Chem 268:4069–4077

    PubMed  CAS  Google Scholar 

  • Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC, Ames BN (1998) DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci USA 95:288–293

    Article  PubMed  CAS  Google Scholar 

  • Henderson J P, Byun J, Heinecke JW (1999) Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes produces 5-chlorocytosine in bacterial RNA. J Biol Chem 274:33440–33448

    Article  PubMed  CAS  Google Scholar 

  • Hmadcha A, Bedoya FJ, Sobrino F, Pintado E (1999) Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production. J Exp Med 190:1595–1604

    Article  PubMed  CAS  Google Scholar 

  • Hobbs A J, Fukuto JM, Ignarro LJ (1994) Formation of free nitric oxide from 1-arginine by nitric oxide synthase: direct enhancement of generation by superoxide dismutase. Proc Natl Acad Sci USA 91:10992–10996

    Article  PubMed  CAS  Google Scholar 

  • Hobbs AJ, Higgs A, Moncada S (1999) Inhibition of nitric oxide synthase as a potential therapeutic target. Annu Rev Pharmacol Toxicol 39:191–220

    Article  PubMed  CAS  Google Scholar 

  • Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH (1999) A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 190: 1375–1382

    Article  PubMed  CAS  Google Scholar 

  • IARC Working Group on the Evaluation of Cancer Preventive Agents (1997) IARC Handbooks of Cancer Prevention Nonsteroidal Anti-Inflammatory Drugs. 1, International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1994a) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: vol. 59: Hepatitis Viruses. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1994b) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: vol. 61: Schistosomes, Liver Flukes and Helicobacter pylori. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1995) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: vol. 64: Human Papilloma viruses. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1996) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: vol. 67: Human Immunodeficiency Viruses and Human T-cell Lymphotropic Viruses. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1997) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: vol. 70: Epstein-Barr Viruses and Kaposi’s Sarcoma Herpesviruses/Human Herpesvirus. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • Ischiropoulos H (1998) Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys 356:1–11

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal M, LaRusso NF, Nishioka N, Nakabeppu Y, Gores GJ (2001) Human Oggl, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res 61:6388–6393

    PubMed  CAS  Google Scholar 

  • Jeong JK, Juedes MJ, Wogan GN (1998) Mutations induced in the supF gene of pSP189 by hydroxyl radical and singlet oxygen: relevance to peroxynitrite mutagenesis. Chem Res Toxicol 11:550–556

    Article  PubMed  CAS  Google Scholar 

  • Kasai H (1997) Analysis of a form of oxidative DNA damage, 8-hydroxy-2’-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res 387:147–163

    Article  PubMed  CAS  Google Scholar 

  • Kim YM, Talanian RV, Billiar TR (1997) Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem 272: 31138–31148

    Article  PubMed  CAS  Google Scholar 

  • Lander HM, Ogiste JS, Pearce SF, Levi R, Novogrodsky A (1995) Nitric oxide-stimulated guanine nucleotide exchange on p21ras. J Biol Chem 270:7017–7020

    Article  PubMed  CAS  Google Scholar 

  • Lejeune P, Lagadec P, Onier N, Pinard D, Ohshima H, Jeannin JF (1994) Nitric oxide involvement in tumor-induced immunosuppression. J Immunol 152:5077–5083

    PubMed  CAS  Google Scholar 

  • Li CQ, Pignatelli B, Ohshima H (2001) Increased oxidative and nitrative stress in human stomach associated with cagA+ Helicobacter pylori infection and inflammation. Dig Dis Sci 46:836–844

    Article  PubMed  CAS  Google Scholar 

  • Ma XL, Gao F, Liu GL, Lopez BL, Christopher TA, Fukuto JM, Wink DA, Feelisch M (1999) Opposite effects of nitric oxide and nitroxyl on postischemic myocardial injury. Proc Natl Acad Sci USA 96:14617–14622

    Article  PubMed  CAS  Google Scholar 

  • Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS (1994) Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Marx J (2001) Anti-inflammatories inhibit cancer growth-but how? Science 291: 581–582

    Article  PubMed  CAS  Google Scholar 

  • Masuda M, Suzuki T, Friesen MD, Ravanat JL, Cadet J, Pignatelli B, Nishino H, Ohshima H (2001) Chlorination of guanosine and other nucleosides by hypochlor-ous acid and myeloperoxidase of activated human neutrophils. Catalysis by nicotine and trimethylamine. J Biol Chem 276:40486–40496

    Article  PubMed  CAS  Google Scholar 

  • Masuda M, Nishino H, Ohshima H (2002) Formation of 8-nitroguanosine in cellular RNA as a biomarker of exposure to reactive nitrogen species. Chem Biol Interact 139:187–197

    Article  PubMed  CAS  Google Scholar 

  • Mei JM, Hord NG, Winterstein DF, Donald SP, Phang JM (2000) Expression of prostaglandin endoperoxide H synthase-2 induced by nitric oxide in conditionally immortalized murine colonic epithelial cells. FASEB J 14:1188–1201

    PubMed  CAS  Google Scholar 

  • Moraes EC, Keyse SM, Pidoux M, Tyrrell RM (1989) The spectrum of mutations generated by passage of a hydrogen peroxide damaged shuttle vector plasmid through a mammalian host. Nucleic Acids Res 17:8301–8312

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Bindokas VP, Kowlessur D, Elas M, Milstien S, Marks JD, Halpern HJ, Kang UJ (2001) Tetrahydrobiopterin scavenges superoxide in dopaminergic neurons. J Biol Chem 276:34402–34407

    Article  PubMed  CAS  Google Scholar 

  • Niles JC, Burney S, Singh SP, Wishnok JS, Tannenbaum SR (1999) Peroxynitrite reaction products of 3′,5′-di-O-acetyl-8-oxo-7, 8-dihydro-2′-deoxyguanosine. Proc Natl Acad Sci USA 96:11729–11734

    Article  PubMed  CAS  Google Scholar 

  • Niles JC, Wishnok JS, Tannenbaum SR (2001) Spiroiminodihydantoin is the major product of the 8-oxo-7,8-dihydroguanosine reaction with peroxynitrite in the presence of thiols and guanosine photooxidation by methylene blue. Org Lett 3:963–966

    PubMed  CAS  Google Scholar 

  • Oh BR, Sasaki M, Perinchery G, Ryu SB, Park YI, Carroll P, Dahiya R (2000) Frequent genotype changes at — 308, and 488 regions of the tumor necrosis factor-alpha (TNF-alpha) gene in patients with prostate cancer. J Urol 163:1584–1587

    Article  PubMed  CAS  Google Scholar 

  • Ohshima H, Bartsch H (1999) Quantitative estimation of endogenous N-nitrosation in humans by monitoring N-nitrosoproline in urine. Methods Enzymol 301:40–49

    Article  PubMed  CAS  Google Scholar 

  • Ohshima H, Celan I, Chazotte L, Pignatelli B, Mower HF (1999a) Analysis of 3-nitrotyrosine in biological fluids and protein hydrolyzates by high-performance liquid chromatography using a postseparation, on-line reduction column and electrochemical detection: results with various nitrating agents. Nitric Oxide 3:132–141

    Article  PubMed  CAS  Google Scholar 

  • Ohshima H, Friesen M, Brouet I, Bartsch H (1990) Nitrotyrosine as a new marker for endogenous nitrosation and nitration of proteins. Food Chem Toxicol 28: 647–652

    Article  PubMed  CAS  Google Scholar 

  • Ohshima H, Gilibert I, Bianchini F (1999b) Induction of DNA strand breakage and base oxidation by nitroxyl anion (NO-) through hydroxyl radical production. Free Radie Biol Med 26:1305–1313

    Article  CAS  Google Scholar 

  • Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H (2001) Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiola-tion via disulfide S-oxide formation. J Biol Chem 276:29596–29602

    Article  PubMed  CAS  Google Scholar 

  • Parsonnet J (2001) Microbes and malignancy. Infection as a cause of human cancers. Oxford University Press, New York; Oxford

    Google Scholar 

  • Pignatelli B, Bancel B, Plummer M, Toyokuni S, Patricot L-M, Ohshima H (2001a) Helicobacter pylori eradication attenuates oxidative stress in human gastric mucosa. Am J Gastroenterol 96:1758–1766

    Article  PubMed  CAS  Google Scholar 

  • Pignatelli B, Li CQ, Boffetta P, Chen Q, Ahrens W, Nyberg F, Mukeria A, Bruske-Hohlfeld I, Fortes C, Constantinescu V, Ischiropoulos H, Ohshima H (2001b) Nitrated and oxidized plasma proteins in smokers and lung cancer patients. Cancer Res 61:778–784

    PubMed  CAS  Google Scholar 

  • Pisani P, Parkin DM, Munoz N, Ferlay J (1997) Cancer and infection: estimates of the attributable fraction in 1990. Cancer Epidemiol Biomarkers Prev 6:387–400

    PubMed  CAS  Google Scholar 

  • Rubbo H, Parthasarathy S, Barnes S, Kirk M, Kalyanaraman B, Freeman BA (1995) Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives. Arch Biochem Biophys 324:15–25

    Article  PubMed  CAS  Google Scholar 

  • Rusche KM, Spiering MM, Marietta MA (1998) Reactions catalyzed by tetrahydro-biopterin-free nitric oxide synthase. Biochemistry 37:15503–15512

    Article  PubMed  CAS  Google Scholar 

  • Sandhu JK, Privora HF, Wenckebach G, Birnboim HC (2000) Neutrophils, nitric oxide synthase, and mutations in the mutatect murine tumor model. Am J Pathol 156: 509–518

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HH, Hofmann H, Schindler U, Shutenko ZS, Cunningham DD, Feelisch M (1996) No .NO from NO synthase. Proc Natl Acad Sci USA 93:14492–14497

    Article  PubMed  CAS  Google Scholar 

  • Shen Z, Mitra SN, Wu W, Chen Y, Yang Y, Qin J, Hazen SL (2001) Eosinophil peroxidase catalyzes bromination of free nucleosides and double-stranded DNA. Biochemistry 40:2041–2051

    Article  PubMed  CAS  Google Scholar 

  • Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349:431–434

    Article  PubMed  CAS  Google Scholar 

  • Singer B and Bartsch H (1999) Exocyclic DNA Adducts in Mutagenesis and Carcinogenesis. IARC Sci. Publ. 150, International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • Souici AC, Mirkovitch J, Hausel P, Keefer K, Felley-Bosco E (2000) Transition mutation in codon 248 of the p53 tumor suppressor gene induced by reactive oxygen species and a nitric oxide-releasing compound. Carcinogenesis 21:281–287

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Masuda M, Friesen MD, Ohshima H (2001) Formation of spiroiminodihy-dantoin nucleoside by reaction of 8-oxo-7,8-dihydro-2’-deoxyguanosine with hypochlorous acid or a myeloperoxidase-H202-Cl- system. Chem Res Toxicol 14:1163–1169

    Article  PubMed  CAS  Google Scholar 

  • Szabo C, Ohshima H (1997) DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide Biol Chem 1:373–385

    Article  CAS  Google Scholar 

  • Tannenbaum SR, Tamir S, Rojas-Walker TD, Wishnok JS (1994) DNA damage and cytotoxicity caused by nitric oxide. ACS Symp Ser 553:120–135

    Article  CAS  Google Scholar 

  • Uchida K, Stadtman ER (1992) Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc Natl Acad Sci USA 89:4544–4548

    Article  PubMed  CAS  Google Scholar 

  • Vasa M, Breitschopf K, Zeiher AM, Dimmeler S (2000) Nitric oxide activates telom-erase and delays endothelial cell senescence. Circ Res 87:540–542

    Article  PubMed  CAS  Google Scholar 

  • Warzocha K, Ribeiro P, Bienvenu J, Roy P, Chariot C, Rigal D, Coiffier B, Salles G (1998) Genetic polymorphisms in the tumor necrosis factor locus influence non-Hodgkin’s lymphoma outcome. Blood 91:3574–3581

    PubMed  CAS  Google Scholar 

  • Weisburger JH (2001) Antimutagenesis and anticarcinogenesis, from the past to the future. Mutat Res 480–481:23–35

    PubMed  Google Scholar 

  • Weitzman SA, Gordon LI (1990) Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood 76:655–663

    PubMed  CAS  Google Scholar 

  • Weitzman SA, Weitberg AB, Clark EP, Stossel TP (1985) Phagocytes as carcinogens: malignant transformation produced by human neutrophils. Science 227:1231–1233

    Article  PubMed  CAS  Google Scholar 

  • Wink DA, Feelisch M, Fukuto J, Chistodoulou D, Jourd’heuil D, Grisham MB, Vodovotz Y, Cook JA, Krishna M, DeGraff WG, Kim S, Gamson J, Mitchell JB (1998a) The cytotoxicity of nitroxyl: possible implications for the pathophysiological role of NO. Arch Biochem Biophys 351:66–74

    Article  PubMed  CAS  Google Scholar 

  • Wink DA, Vodovotz Y, Laval J, Laval F, Dewhirst MW, Mitchell JB (1998b) The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19:711–721

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Chen Y, d’Avignon A, Hazen SL (1999a) 3-Bromotyrosine and 3,5-dibromotyrosine are major products of protein oxidation by eosinophil peroxidase: potential markers for eosinophil- dependent tissue injury in vivo. Biochemistry 38:3538–3548

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Chen Y, Hazen SL (1999b) Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem 274:25933–25944

    Article  PubMed  CAS  Google Scholar 

  • Yermilov V, Rubio J, Ohshima H (1995) Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett 376:207–210

    Article  PubMed  CAS  Google Scholar 

  • Yoshie Y, Ohshima H (1997) Nitric oxide synergistically enhances DNA strand breakage induced by polyhydroxyaromatic compounds, but inhibits that induced by the Fenton-reaction. Arch Biochem Biophys 342:13–21

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohshima, H., Tatemichi, M. (2003). Infections, Inflammation and Cancer: Roles of Reactive Oxygen and Nitrogen Species. In: Vainio, H.U., Hietanen, E.K. (eds) Mechanisms in Carcinogenesis and Cancer Prevention. Handbook of Experimental Pharmacology, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08602-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08602-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07859-0

  • Online ISBN: 978-3-662-08602-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics