Skip to main content

Biotransformation of Toxic Organic and Inorganic Contaminants by Halophilic Bacteria

  • Chapter
Halophilic Microorganisms

Abstract

In many arid regions, lakes often lose significant amounts of water through evaporation, leading to alkaline and saline aquatic systems. The water in terminal lakes (i.e. lakes with no outlet) may contain from 0.3–30% NaCl and higher (Williams 1998). Saline lakes are globally distributed and account for approximately half of the total volume of all inland surface water in the world (Williams 1998). The alkaline-saline lakes are a special class of saline lakes, with a pH from 9 to almost 12 in addition to high salinity (Duckworth et al. 1996). Lake Magadi (Kenya), Mono Lake (California, USA) and Soap Lake (Washington, USA) are examples of such lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azachi M, Henis Y, Oren A, Gurevich P, Sarig S (1995) Transformation of formaldehyde by Halomonas sp. Can J Microbiol 41: 548–553

    Article  Google Scholar 

  • Barrett ME, Zuber RD, Collins ER III, Malina JF Jr, Charbeneau RJ, Ward GH (1993) A review and evaluation of literature pertaining to the quantity and control of pollution from highway runoff and construction. Texas DOT Office of Research and Technology Transfer, Austin Texas. Center for Transportation Research University of Texas at Austin, report no 1943–1, pp 1–140

    Google Scholar 

  • Berendes F, Gottschalk G, Heine-Dobbernack E, Moore ERB, Tindall BJ (1996) Halomonas desiderata sp. nov., a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works. Syst Appl Microbiol 19: 158–167

    Google Scholar 

  • Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11: 260–263

    Article  CAS  Google Scholar 

  • Boone DR, Johnson RL, Chen DC, Mathrani IM, Mah RA (1989) Methanogenesis and reductive dechlorinations in an alkaline, hypersaline sediment and groundwater. In: Da Costa MS, Duarte JC, Williams RAD (eds) Microbiology of extreme environments and its potential for biotechnology. Elsevier Applied Science, London, pp 205–215

    Google Scholar 

  • DeFrank JJ, Cheng TC (199 1) Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate. J Bacteriol 173: 1938–1943

    Google Scholar 

  • DeFrank JJ, Beaudry WT, Cheng TC, Harvey SP, Stroup AN, Szafraniec LL (1993) Screening of halophilic bacteria and Alteromonas species for organophosphorus hydrolyzing enzyme activity. Chem Biol Interact 87: 141–148

    Article  PubMed  CAS  Google Scholar 

  • de Souza MP, Amini A, Dojka MA, Pickering IJ, Dawson SC, Pace NR, Terry N (2001) Identification and characterization of bacteria in a selenium-contaminated hypersaline evaporation pond. Appl Environ Microbiol 67: 3785–3794

    Article  PubMed  Google Scholar 

  • Dinçer AR, Kargi F (1999) Salt inhibition of nitrification and denitrification in saline wastewater. Environ Technol 20: 1147–1153

    Article  Google Scholar 

  • Dinçer AR, Kargi F (2001) Performance of rotating biological disc system treating saline wastewater. Process Biochem 36: 901–906

    Article  Google Scholar 

  • Driscoll ED, Shelley PE, Strecker EW (1990) Pollutant loadings and impacts from highway stormwater runoff, vol I. Design procedure. Federal Highway Administration, Office of Research and Development, report FHWA-RD-88–006

    Google Scholar 

  • Duckworth AW, Grant WD, Jones BE, Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19: 181–191

    Article  CAS  Google Scholar 

  • Emerson D, Chauhan S, Oriel P, Breznak JA (1994) Haloferax sp. D1227, a halophilic archaeon capable of growth on aromatic compounds. Arch Microbiol 161: 445–452

    Google Scholar 

  • Francis AJ, Dodge CJ, Gillow JB, Papenguth HW (2000) Biotransformation of uranium compounds in high ionic strength brine by a halophilic bacterium under denitrifying conditions. Environ Sci Technol 34: 2311–2317

    Article  CAS  Google Scholar 

  • Fu WJ, Oriel P (1998) Gentisate 1,2-dioxygenase from Haloferax sp. D1227. Extremophiles 2: 439–446

    Article  PubMed  CAS  Google Scholar 

  • Fu WJ, Oriel P (1999) Degradation of 3-phenylpropionic acid by Haloferax sp. D1227. Extremophiles 3: 45–53

    Article  PubMed  CAS  Google Scholar 

  • Garcia MT, Nieto JJ, Ventosa A, Ruiz-Berraquero F (1987) The susceptibility of the moderate halophile Vibrio costicola to heavy metals. J Appl Bacteriol 63: 63–66

    Article  CAS  Google Scholar 

  • Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42: 568–576

    Google Scholar 

  • Hayes VEA, Ternan NG, McMullan G (2000) Organophosphonate metabolism by a moderately halophilic bacterial isolate. FEMS Microbiol Lett 186: 171–175

    Article  PubMed  CAS  Google Scholar 

  • Hinteregger C, Streichsbier F (1997) Halomonas sp., a moderately halophilic strain, for

    Google Scholar 

  • biotreatment of saline phenolic waste-water. Biotechnol Lett 19:1099–1102

    Google Scholar 

  • Kargi F, Dinçer AR (2000) Use of halophilic bacteria in biological treatment of saline

    Google Scholar 

  • wastewater by fed-batch operation. Water Environ Res 72:170–174

    Google Scholar 

  • Kargi F, Uygur A (1996) Biological treatment of saline wastewater in an aerated percolator unit utilizing halophilic bacteria. Environ Technol 17: 325–330

    Article  CAS  Google Scholar 

  • Kargi F, Dinçer AR, Pala A (2000) Characterization and biological treatment of pickling industry wastewater. Bioprocess Eng 23: 371–374

    Article  CAS  Google Scholar 

  • Kubo M, Hiroe J, Murakami M, Fukami H, Tachiki T (2001) Treatment of hypersalinecontaining wastewater with salt-tolerant microorganisms. J Biosci Bioeng 91: 222–224

    PubMed  CAS  Google Scholar 

  • Kulichevskaya IS, Milekhina EI, Borzenkov IA, Zvyagintseva IS, Belyaev SS (1991) Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria. Microbiology (Russia) 60: 596–601

    Google Scholar 

  • Lahav R, Fareleira P, Nejidat A, Abeliovich A (2002) The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds. Microb Ecol 43: 388–396

    Article  PubMed  CAS  Google Scholar 

  • Maltseva O, McGowan C, Fulthorpe R, Oriel P (1996) Degradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology 142: 1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Mancinelli RL, Hochstein LI (1986) The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol Lett 35: 55–58

    Article  PubMed  CAS  Google Scholar 

  • McMeekin TA, Nichols PA, Nichols SD, Juhasz A, Franzmann PD (1993) Biology and biotechnological potential of halotolerant bacteria from Antarctic saline lakes. Experientia 49: 1042–1046

    Article  CAS  Google Scholar 

  • Mormile MR, Romine MF, Garcia MT, Ventosa A, Bailey TJ, Peyton BM (1999) Halomonas campisalis sp nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 22: 551–558

    Google Scholar 

  • Nakamura M (1997) Preserving the health of the world lakes. Environment 39: 16–40

    Article  Google Scholar 

  • Nieto JJ (1991) The response of halophilic bacteria to heavy metals. In: Rodriguez-Valera F (ed) General and applied aspects of halophilic microorganisms. Plenum Press, New York, pp 173–179

    Chapter  Google Scholar 

  • Nieto JJ, Ventosa A, Ruiz-Berraquero F (1987) Susceptibility of halobacteria to heavy metals. Appl Environ Microbiol 53: 1199–1202

    PubMed  CAS  Google Scholar 

  • Nieto JJ, Ventosa A, Montero CG, Ruiz-Berraquero F (1989a) Toxicity of heavy metals to archaebacterial halococci. Syst Appl Microbiol 11: 116–120

    Article  CAS  Google Scholar 

  • Nieto JJ, Fernández-Castillo R, Márquez MC, Ventosa A, Quesada E, Ruiz-Berraquero F (1989b) Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55: 2385–2390

    PubMed  CAS  Google Scholar 

  • Oesterhelt D, Patzelt H, Kesler B (1998) Decomposition of halogenated hydrocarbons by halophilic bacteria. Patent DE19639894, 9 April 1998

    Google Scholar 

  • Oren A, Gurevich P, Azachi M, Henis Y (199 1) Reduction of nitrosubstituted aromatic compounds by the halophilic anaerobic eubacteria Haloanaerobium praevalens and Sporohalobacter marismortui. Appl Environ Microbiol 57: 3367–3370

    Google Scholar 

  • Oren A, Gurevich P,Azachi M, Henis Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3: 387–398

    Article  CAS  Google Scholar 

  • Oriel P, Chauhan S, Maltseva O, Fu W (1997) Degradation of aromatics and haloaromatics by halophilic bacteria. In: Horikoshi K, Fukuda M, Kudo T (eds) Microbial diversity and genetics of biodegradation. Japan Scientific Societies Press, Tokyo/Karger, Basel, pp 123–130

    Google Scholar 

  • Peyton BM, Mormile MR, Petersen J (2000) Denitrification of solutions with high total dissolved solids: nitrate reduction kinetics of a halotolerant alkaliphilic bacterium. Water Res 35: 4237–4242

    Article  Google Scholar 

  • Peyton BM, Wilson T, Yonge DR (2002) Kinetics of phenol biodegradation in high salt solutions. Water Res 36: 4811–4820

    Article  PubMed  CAS  Google Scholar 

  • Pickett P (1999) Sun Lakes trophic status assessment study, Washington State Department of Ecology, Olympia, publication N 99–315

    Google Scholar 

  • Plotnikova EG, Alyntseva OV, Kosheleva IA, Puntus IF, Filonov AE, Gavrish EY, Demakov VA, Boronin AM (200 1) Bacterial degraders of polycyclic aromatic hydrocarbons isolated from salt-contaminated soils and bottom sediments in salt mining areas. Microbiology (Russia) 70: 51–58

    Google Scholar 

  • Rosenberg A (1983) Pseudomonas halodurans sp. nov., a halotolerant bacterium. Arch Microbiol 136:117–123

    Google Scholar 

  • Santos CA, Vieira AM, Fernandes HL, Empis JA, Novais JM (2001) Optimisation of the biological treatment of hypersaline wastewater from Dunaliella salina carotenogenesis. J Chem Technol Biotechnol 76: 1147–1153

    Article  CAS  Google Scholar 

  • Shaheen DG (1975) Contributions of urban roadway usage to water pollution. Environmental Protection Agency. Report EPA 600/2–75–004, Washington, DC

    Google Scholar 

  • Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California, that respire oxyanions of selenium and arsenic. Arch Microbiol 171: 19–30

    Google Scholar 

  • Switzer Blum J, Stolz JF, Oren A, Oremland RS (2001) Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch Microbiol 175: 208–219

    Google Scholar 

  • US Environmental Protection Agency (USEPA) (1983) Results of the nationwide urban runoff program, final report. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US Fish and Wildlife Service (USFWS) (1999) Contaminant assessment of palustrine and lacustrine habitats of the Great Salt Lake. Utah Field Office, Salt Lake City, UT, USA

    Google Scholar 

  • US Geological Survey (USGS) (1999) The quality of our nation’s waters–nutrients and pesticides. USGS Circular 1225, US Department of the Interior, US Geological Survey, Reston, VA, USA

    Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately aerobic halophilic bacteria. Microbiol Mol Biol Rev 62: 504–524

    PubMed  CAS  Google Scholar 

  • Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35: 353–359

    PubMed  CAS  Google Scholar 

  • Williams WD (1998) What future for saline lakes? Environment 38: 13–39

    Google Scholar 

  • Woolard CR, Irvine RL (1994) Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria. Water Environ Res 66: 230–235

    Article  CAS  Google Scholar 

  • Woolard CR, Irvine RL (1995) Treatment of hypersaline wastewater in the sequencing batch reactor. Water Res 29: 1159–1168

    Article  CAS  Google Scholar 

  • Yonge DR, Hossain A, Barber M (2002) Wet detention pond design for highway runoff pollutant control. Final Report 25–12, National Cooperative Highway Research, Washington, DC

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peyton, B.M. et al. (2004). Biotransformation of Toxic Organic and Inorganic Contaminants by Halophilic Bacteria. In: Ventosa, A. (eds) Halophilic Microorganisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07656-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07656-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05664-2

  • Online ISBN: 978-3-662-07656-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics