Skip to main content

Bioleaching of Copper

  • Chapter
Biomining

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Natural bioleaching has been taking place for almost as long as the history of the world, but it is only in the last few decades that we have realized that bioleaching is responsible for acid production in some mining wastes, and that this bacterial activity can be used to liberate some metals. The application of the bioleaching reaction for copper has been exploited and used to develop suitable methods to recover copper from copper-bearing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruynesteyn A. Bacterial leaching; its potential impact upon the Canadian nonferrous metals industry. 86th Annual General Meeting of the CIM. April 17, 1983.

    Google Scholar 

  2. b. Sullivan JD. Chemistry of leaching chalcocite, TP-473. U.S. Bureau of Mines. 193o.

    Google Scholar 

  3. Thomas G, Ingraham TR, MacDonald RJC. Kinetics of dissolution of synthetic dignite and chalcocite in aqueous acidic ferric sulfate solutions. Canadian Metallurgical Quarterly 1967; 6: 281–291.

    Article  CAS  Google Scholar 

  4. Whiteside LS, Goble RJ. Structural and compositional changes in copper sulfides during leaching and dissolution. Canadian Minerologist. 1986; 24.

    Google Scholar 

  5. Goble RJ. Copper sulfides from Alberta: Yarrowite Cu9S8 and Spionkopite Cu39S28. Canadian Minerologist. 1980; 18: 511–518.

    Google Scholar 

  6. Scott DJ. The mineralogy of copper leaching: concentrates and heaps. Copper ‘81, Copper Hydrometallurgy Short Course. Ottawa, June 1991.

    Google Scholar 

  7. Scott DJ. The mineralogy of copper leaching: concentrates and heaps. Copper ‘85, Copper Hydrometallurgy Short Course. Santiago, November 1995.

    Google Scholar 

  8. Bruynesteyn A, Duncan DW. Effect of particle size on the microbiological leaching chalcopyrite bearing ore. Solution Mining Symposium 1974.

    Google Scholar 

  9. D’Andrea D, Chamberlain PG, Fletcher LR, Ground characterization for in situ copper leaching. Proceedings of the Las Vegas Symposium on Leaching and Recovering Copper from As-Mined Materials, February 1980.

    Google Scholar 

  10. Farias L et al. Acid leaching of copper ores. Copper ‘85, Copper Hydrometallurgy Short Course. Santiago, November 1995.

    Google Scholar 

  11. Woodcock JT. Copper waste dump leaching. Proceeding Australian Institute Mining and Metallurgy. Dec 1967.

    Google Scholar 

  12. Domic EM. Resultados tecnico-economicos de la operacion industrial del proceso TL en chile, Simosio Internacional sobre la Actual Tecnologia del Cobre, Bucaramanga, Colombia, November 1982.

    Google Scholar 

  13. Jo M, Bustos S, Espejo R et al. Bacterial thin layer leaching of copper sulfide ores. Proceeding of Copper ‘81 Symposium. Ottawa, June 1991.

    Google Scholar 

  14. Montealegre R, Bustos S, Rauld J et al. Copper sulfide hydrometallurgy and the thin layer bacterial technology of Sociedad Minera Pudahuel. Proceedings of Copper ‘85 Symposium. Santiago, November 1995.

    Google Scholar 

  15. Schnell HA. The Quebrada Blanca operation, SME, March 1996.

    Google Scholar 

  16. Bryner LC, Beck JV et al. Microorganisms in leaching sulfide minerals, Industrial and Engineering Chemistry, Vol 46, 1954.

    Google Scholar 

  17. Herrera MN, Wiertz JV et al. A phenomenological model of the bioleaching of complex sulfide ores Hydrometallurgy Vol 22, Elsevier Science Publishers, 1989.

    Google Scholar 

  18. Bartlett RW. Simulation of ore heap leaching using deterministic models. Hydro-metallurgy Vol 29. Elsevier Science Publishers, 1992.

    Google Scholar 

  19. Anon. Sulfuros de baja ley aporta 15 mil T/ano a Chuquicamata, Mineria Chilena, July 1994.

    Google Scholar 

  20. Moodry RP. Compressed air injection into a sulfide leach dump, AS 116, August 1976.

    Google Scholar 

  21. Trivedi NC, Tsuchiya. Microbial mutualism inleaching of Cu-Ni sulfide concentrate. International Journal of Mineral Processing, Elsevier Scientific Publishing Co., 1975.

    Google Scholar 

  22. Montealegre R, Bustos S et al. Application of the thin layer process to Quebrada Blanca ores. Biohydrometallurgical Technologies, The Minerals, Metals and Materials Society, 1993.

    Google Scholar 

  23. Anon. Quebrada Blanca-the first sx/ew project at over 4,000 m altitude. EMJ, February 1995.

    Google Scholar 

  24. Clifford D. Stacking systems in heap leaching. Mining Magazine, August 1996.

    Google Scholar 

  25. Anon. The big heap. World Mining Equipment, November 1996.

    Google Scholar 

  26. Pino F. Division salvador of Codelco Chile introduces the lx/sx/ew process as a new line of production. Proceedings of Copper ‘85 Symposium. Santiago, November 1995.

    Google Scholar 

  27. Anon. Mina to aquirre sociedad minera pudahuel ltda. y cia. C.p.a., Minera Chilena, July 1983.

    Google Scholar 

  28. Fletcher AW. Copper recovery from low-grade ore by bacterial leaching. In: Microbiological Aspects of Metallurgy, chapter 8, 1970.

    Google Scholar 

  29. Anon. Trends and implications of the continued developments of sx/ew copper production. Pincock, Allen and Holt, Inc., March 1990.

    Google Scholar 

  30. Anon. Predicted sx/ew copper production. Mining Journal, February 1996.

    Google Scholar 

  31. Jenkins JG, Eamon MA. Plant practices and innovations at Magma Copper Company, San Manuel. Proceedings of Copper ‘81 Symposium. Ottawa, June 1991.

    Google Scholar 

  32. Davies JA, Hopkins WR. Recent developments in electrometallurgical tankhouse environmental control, CIM Bulletin, June 1994.

    Google Scholar 

  33. Anon. Minera zaldivar, Minera Chilena, August 1995.

    Google Scholar 

  34. Schnell HA. Quebrada Blanca and the environment. Proceedings of Copper ‘85 Symposium. Santiago, November 1995.

    Google Scholar 

  35. Beane R, Ramey D. In situ leaching at San Manuel porphyry copper deposit. Proceedings of Copper ‘85 Symposium. Santiago, November 1995.

    Google Scholar 

  36. Ramey D, Beane R. In situ project evaluation; magma copper’s approach. Proceedings of Copper ‘85 Symposium. Santiago, November 1995.

    Google Scholar 

  37. Schnell HA. The Quebrada Blanca project, Copper ‘85, Copper Hydrometallurgy Short Course. Santiago, November 1995.

    Google Scholar 

  38. Lynch AJ, Taylor A, Avendano C. Solvent extraction boom in Latin America, EMJ, December 1994.

    Google Scholar 

  39. Anon. Title page, Revista Innovacion, University of Antofagasta, May 1995.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schnell, H.A. (1997). Bioleaching of Copper. In: Rawlings, D.E. (eds) Biomining. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06111-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06111-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06113-8

  • Online ISBN: 978-3-662-06111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics