Skip to main content

Photoperiodism in Plants

  • Chapter
Biological Rhythms

Abstract

In photoperiodism induction occurs if a sufficiently long period of darkness or light is experienced. Rhythmicity can be demonstrated as responses to the timing of interruption of darkness by light (short-day plants, SDP), or additions of far-red light to constant white light (long-day plants, LDP). The resulting photoperiodic response rhythm (PRR) has a period of about 24 h, shows temperature compensation, and is entrained by light. Light also has a direct (‘acute’) response, inhibiting or promoting induction at particular phases, and so giving rise to the external coincidence model for control of induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bollig, I. (1977) Different circadian rhythms regulate photoperiodic flowering response and leaf movement in Pharbitis nil ( L.) Choisy. Planta. 135: 137–427.

    Article  Google Scholar 

  • Brest, D.E., Hoshizaki, T., Hamner, K.C. (1971) Rhythmic leaf movements in Biloxi soybeans and their relation to flowering. Plant Physiol. 47: 676–681.

    Article  PubMed  CAS  Google Scholar 

  • Bunning, E. (1960) Circadian rhythms and the time measurement in photoperiodism. Cold Spr. Harb. Symp. Quant. Biol. 25: 249–256.

    Article  Google Scholar 

  • Borthwick, H.A., Hendricks, S.B., Parker, M.W. (1948) Action spectrum for the photoperiodic control of floral initiation of a long day plant, Wintex barley (Hordeum vulgare). Bot. Gaz. 110: 103–118.

    Google Scholar 

  • Carr, D.J. (1952) The photoperiodic behaviour of short-day plants. Physiol. Plant 5: 70–84.

    Google Scholar 

  • Carr-Smith, H.D., Thomas, B., Johnson, C.B., Plumpton, C., Butcher, G. (1994) The kinetics of type 1 phytochrome in green, light-grown wheat (Triticum aestivum L.). Planta 194: 136–142.

    Article  CAS  Google Scholar 

  • Childs, K.L., Morgan, P.W., Miller, F.R., Pratt, L.H., Cordonnier-Pratt, M-M., Muller, J.E. (1997) The Sorghum bicolor photoperiod sensitivity gene, Mai, encodes a phytochrome B. Plant Physiol. 113: 611–619.

    Article  PubMed  CAS  Google Scholar 

  • Cumming, B.G., Hendricks, S.B., Borthwick, H.A. (1965) Rhythmic flowering responses and phytochrome changes in a selection of Chenopodium rubrum. Can. J. Bot. 43: 825–853.

    Google Scholar 

  • Deitzer, G.F., Hayes, R., Jabben, M. (1982) Phase shift in the circadian rhythm of floral promotion by far-red light in Hordeum vulgare L. Plant Physiol. 69: 597–601.

    Article  PubMed  CAS  Google Scholar 

  • Deitzer, G.F. (1984) Photoperiodic induction in long-day plants. In: Vince-Prue, D., Thomas, B., Cockshull, K.E. (eds.) Light and the Flowering Process. Academic Press, pp. 51–64.

    Google Scholar 

  • Dormling, I., Gustafsson, A., von Wettstein, D. (1968) The experimental control of the life cycle in Picea ables (L.) Karst. Silvae. Genet. 17: 44–64.

    Google Scholar 

  • Garner, W.W., Allard, H.A. (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res. 18: 553–606.

    Google Scholar 

  • Garner, W.W., Allard, H.A. (1923) Further studies on photoperiodism, the response of plants to relative length of day and night. J. Agric. Res. 23: 871–920.

    Google Scholar 

  • Hamner, K.C. (1940) Interaction of light and darkness in photoperiodic induction. Bot. Gaz. 101: 658–687. Hamner, K.C., Bonner, J. (1938) Photoperiodism in relation to hormones as factors in floral initiation and development. Bot. Gaz. 100: 388–431.

    Google Scholar 

  • Hamner, K.C., Long, E.M. (1939) Localization of photoperiodic perception in Helianthus tuberosus. Bot. Gaz. 101: 81–90.

    Google Scholar 

  • Hsu, J.C.S., Hamner, K.C. (1967) Studies on the involvement of an endogenous rhythm in the photoperiodic response of Hyoscyamus niger. Plant. Physiol. 42: 725–730.

    Google Scholar 

  • Jackson, S.D., Thomas, B. (1997) Photoreceptors and signals in the photoperiodic control of development. Plant Cell Environ. 20: 790–795.

    Article  CAS  Google Scholar 

  • Jackson, S.D., Heyer, A., Dietze, J., Prat, S. (1996) Phytochrome B mediates the photoperiodic control of tuber formation in potato. Plant J. 9: 159–166.

    Article  CAS  Google Scholar 

  • Johnson, E., Bradley, M., Harberd, N.P., Whitelam, G.C. (1994) Photoresponses of light-grown phyA mutants of Arabidopsis. Plant Physiol. 105: 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Kinet, J.M., Bernier, G., Bodson, M., Jacqmard, A. (1973) Circadian rhythms and the induction of flowering in Sinapis alba. Plant Physiol. 51: 598–600.

    Article  PubMed  CAS  Google Scholar 

  • King, R.W. (1975) Multiple circadian rhythms regulate photoperiodic flowering responses in Chenopodium rubrum. Can. J. Bot. 53: 2631–2638.

    Google Scholar 

  • King, R.W., Cumming, B.G. (1972) Rhythms as photoperiodic timers in the control of flowering in Chenopodium rubrum L. Planta 103: 281–301.

    Article  Google Scholar 

  • Klebs, G. (1913) Über das Verhältnis der Aussenwelt zur Entwicklung der Pflanze. Sber. Akad. Wiss. Heidelberg 5: 1–47.

    Google Scholar 

  • Knott, J.E. (1934) Effect of a localized photoperiod on spinach. Proc. Am. Soc. Hort. Sci. 31: 152–154. Lumsden, P.J. (1991) Circadian rhythms and phytochrome. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 351–371.

    Google Scholar 

  • Lumsden, P.J. (1996) A limit cycle model for the circadian clock in the photoperiodic control of flowering in short-day plants. The Flowering Newsletter 21: 42–47.

    Google Scholar 

  • Lumsden, P.J., Furuya, M. (1986) Evidence for two actions of light in the photoperiodic induction of flowering in Pharbitis nil. Plant Cell Physiol. 27: 1541–1551.

    Google Scholar 

  • Millar, A. (1999) Biological clocks in Arabdopsis thaliana. New Phytol. 141: 175–197.

    Article  CAS  Google Scholar 

  • Mozley, D., Thomas, B. (1995) Developmental and photobiological factors affecting photoperiodic induction in Arabidopsis thaliana Henh. Landsberg erecta. J. Expt. Bot. 46: 173–179.

    Google Scholar 

  • Papenfuss, H.D. Salisbury, F.B. (1967) Aspects of clock resetting in flowering of Xanthium. Plant Physiol. 42: 1562–1568.

    CAS  Google Scholar 

  • Parker, M.W., Hendricks, S.B., Borthwick, H.A., Scully, N.J. (1946) Action spectrum for the photoperiodic control of floral initiation of short-day plants. Bot. Gaz. 108: 1–26.

    Article  Google Scholar 

  • Parker, M.W., Hendricks, S.B., Borthwick, H.A. (1950) Action spectrum for the photoperiodic control of floral initiation of the long day Plant. Hyoscyamus niger. Bot. Gaz. 111: 242–252.

    Article  CAS  Google Scholar 

  • Périlleux, C., Bernier, G., Kinet, J-M. (1994) Circadian rhythms and the induction of flowering in the long-day grass Lolium temulentum L. Plant Cell Environ. 17: 755–761.

    Article  Google Scholar 

  • Peterson, E.L., Saunders, D.S. (1980) The circadian eclosion rhythm in Sarcophaga argyrostoma; a limit cycle representation of the pacemaker. J. Theor. Biol. 86: 265–277.

    Article  Google Scholar 

  • Qamaruddin, M., Ekberg, I., Dormling, I., Norell, L., Clapham, D., Eriksson, G. (1995) Early effects of long nights on budset, dormancy, and abscisic acid content in two populations of Picea abies. Forest Genet. 2: 207–216.

    Google Scholar 

  • Schwabe, W.W., Naschmony-Bascombe, S. (1963) Growth and dormancy in Lunularia cruciata (L.) Dum. II. The response to daylength and temperature. J. Exp. Bot. 14: 353–378.

    Article  Google Scholar 

  • Spector, C., Paraska, J.R. (1973) Rhythmicity of flowering in Pharbitis nil. Physiol. Plant. 29: 402–405.

    Article  Google Scholar 

  • Takimoto, A., Hamner, K.C. (1965) Studies on red light interruption in relation to timing mechanisms involved in the photoperiodic response of Pharbitis nil. Plant Physiol. 40: 852–854.

    Article  Google Scholar 

  • Thomas, B., Vince-Prue, D. (1996) Photoperiodism in Plants. Academic Press. London.

    Google Scholar 

  • Tournois, J. (1912) Influence de la lumière sur la floraison du houblon japonais et du chanvre déterminées par des semis haitifs. C.R. Hebd. Séanc. Acad. Sci. Paris 155: 297–300.

    Google Scholar 

  • Tournois, J. (1914) Études sur la sexualité du houblon. Annis. Sci. Nat. (Bot.) 19: 49–191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lumsden, P.J. (2002). Photoperiodism in Plants. In: Kumar, V. (eds) Biological Rhythms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06085-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06085-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06087-2

  • Online ISBN: 978-3-662-06085-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics