Skip to main content

Impacts of Canopy Internal Gradients on Carbon and Water Exchange of Beech and Oak Trees

  • Chapter
Biogeochemistry of Forested Catchments in a Changing Environment

Part of the book series: Ecological Studies ((ECOLSTUD,volume 172))

Abstract

Identifying the relevance of forest structure for stand photosynthesis and transpiration is one of the remaining challenges in plant physiological ecology. While leaves and their stomata are the causal agents of stand transpiration and canopy conductance, and their position and orientation are known to be decisive for their gas-exchange contribution, the spatial distribution pattern of leaves inside a forest cannot yet be considered in stand gas-exchange models. Canopy conductance of a mature tree is created by the conductances of about 1011 stomata (Larcher 2001; Fleck 2002, p. 49) which act depending on their local micrometeorological conditions (light, humidity). A process-oriented representation of forest canopy structures in stand gas-exchange models is, thus, still hindered by the enormous complexity of canopies, which makes it nearly impossible to assess and model them in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Atkin OK, Evans JR, Ball MC, Lambers H, Pons TL (2000) Leaf respiration of snow gum in the light and dark. Interactions between temperature and irradiance. Plant Physiol 122:915–923

    Article  PubMed  CAS  Google Scholar 

  • Baldocchi D, Collineau S (1994) The physical nature of solar radiation in heterogeneous canopies: spatial and temporal attributes. In: Caldwell MM, Pearcy RW (eds) Physiological ecology. A series of monographs, texts, and treatises: exploitation of environmental heterogeneity by plants. Ecophysiological processes above- and belowground. Academic Press, San Diego

    Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens J (ed) Progress in photosynthesis research. Proc 7th Int Photosynthesis Congress, vol 4. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Bartelink HH (1997) Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Ann Sci For 54:39–50

    Article  Google Scholar 

  • Bauer G, Schulze E-D, Mund M (1997) Nutrient contents and concentrations in relation to growth of Picea abies and Vagus sylvatica along a European transect. Tree Physiol 17:777–786

    Article  PubMed  Google Scholar 

  • Burger H (1945) Holz, Blattmenge und Zuwachs — die Buche. Mitt Schweiz Anst Forstl Versuchswesen 26:419–468

    Google Scholar 

  • Burger H (1947) Die Eiche. Mitt Schweiz Anst Forstl Versuchswesen 25:211–279

    Google Scholar 

  • Campbell GS, Norman JM (1989) The description and measurement of plant canopy structure. In: Russell G, Marshall B, Jarvis PG (eds) Society for Experimental Biology seminar series, vol 31. Plant canopies: their growth, form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Cescatti A (1997) Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. I. Model structure and algorithms. Ecol Model 101:263–274

    Article  Google Scholar 

  • De Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557

    Article  Google Scholar 

  • Falge E (1997) Die Bedeutung der Kronendachtranspiration von Fichtenbeständen (Picea abies (L.) Karst.) mit unterschiedlichen Modellierungsansätzen. Bayreuther Forum Ökol 48:549–550

    Google Scholar 

  • Faltin W (2004) Scaling up water and CO2 fluxes of forested areas from stand to footprint level by means of an individual-based 3D model. Dissertation, University of Bayreuth, Germany

    Google Scholar 

  • Farquhar GD, von Caemmerer S (1982) Modeling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, 12B. Physiological plant ecology, vol 2. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fleck S (2002) Integrated analysis of relationships between 3D-structure, leaf photosynthesis, and branch transpiration of mature Vagus sylvatica and Quercus petraea trees in a mixed forest stand. Bayreuther Forum Ökol 97

    Google Scholar 

  • Godin C (2000) Representing and encoding plant architecture: a review. Ann For Sci 57(5/6):413–438

    Article  Google Scholar 

  • Harley PC, Tenhunen JD (1991) Modeling the photosynthetic response of C3 leaves to environmental factors. In: Boote KJ (ed) CS A special publication, no 19. Modeling crop photosynthesis — from biochemistry to canopy. American Society of Agronomy and Crop Science Society of America, Madison

    Google Scholar 

  • Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of cotton in elevated CO2. Plant Cell Environ 15:271–282

    Article  CAS  Google Scholar 

  • Jarvis PG (1995) Scaling processes and problems. Plant Cell Environ 8:1079–1089

    Article  Google Scholar 

  • Kazda M, Salzer J, Reiter I (2000) Photosynthetic capacity in relation to nitrogen in the canopy of a Quercus robur, Vraxinus angustifolia and Tilia cordata flood plain forest. Tree Physiol 20:1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Krauss HH, Heinsdorf D (1996) Herleitung von Trockenmassen und Nährstoffspeicherungen in Buchenbeständen. Forschungsbericht im Auftrag der Landes-forstverwaltung Brandenburg, Forstliche Forschungsanstalt Eberswalde. Forstliche Forschungsanstalt Eberswalde, Eberswalde, Germany

    Google Scholar 

  • Kull O, Niinemets Ü (1993) Variation in leaf morphometry and nitrogen concentration in Betula pendula Roth., Corylus avellana L. and Lonicera xylosteum L. Tree Physiol 12:311–318

    Article  PubMed  Google Scholar 

  • Kurth W, Sloboda B (1999) Tree and stand architecture and growth described by formal grammars. I. Non-sensitive trees. II. Sensitive trees and competition. J For Sci 45:16–30/53–63

    Google Scholar 

  • Larcher W (2001) Ökophysiologie der Pflanzen. Ulmer, Stuttgart

    Google Scholar 

  • Le Roux X, Grand S, Dreyer E, Daudet F (1999) Parameterization and testing of a biochemically based photosynthesis model for walnut (Juglans regia) trees and seedlings. Tree Physiol 19:481–492

    Article  PubMed  Google Scholar 

  • Leuschner C (1998) Mechanismen der Konkurrenzüberlegenheit der Rotbuche. Ber Reinhard-Tüxen-Gesellsch 10:5–18

    Google Scholar 

  • Martin JG, Kloeppel BD, Schaefer TL, Kimbler DL, McNulty SG (1998) Aboveground bio-mass and nitrogen allocation of ten deciduous southern Appalachian tree species. Can J For Res 28:1648–1659

    Article  Google Scholar 

  • Medlyn BE, Badeck FW, de Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, de Angelis P, Forstreuter M, Jach ME, Kellomäki ME, Laitat E, Marek M, Philippot S, Rey A, Strassemeyer J, Laitinen K, Liozon R, Portier B, Wang K, Jarvis PG (1999) Effects of elevated CO2 on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ 22:1475–1495

    Article  CAS  Google Scholar 

  • Niinemets Ü, Tenhunen JD (1997) A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer sac-charum. Plant Cell Environ 20:845–866

    Article  Google Scholar 

  • Pellinen P (1986) Biomasseuntersuchungen im Kalkbuchenwald. Dissertation, Universität Göttingen, Germany

    Google Scholar 

  • Porte A, Loustau D (1998) Variability of the photosynthetics of mature needles within the crown of a 25-year-old Pinus pinaster. Tree Physiol 18:223–232

    Article  PubMed  Google Scholar 

  • Rogers R, Hinckley TM (1979) Foliar weight and area related to current sapwood area in oak. For Sei 25:298–303

    Google Scholar 

  • Saito H, Kakubari Y (1999) Spatial and seasonal variations in photosynthetic properties within a beech (Fagus crenata Blume) crown. J For Res 4:27–34

    Article  Google Scholar 

  • Schulze E-D, Küppers M, Matyssek R (1986) The roles of carbon balance and branching pattern in the growth of woody species. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 585–602

    Google Scholar 

  • Schulze E-D, Kelliher FM, Körner C, Lloyd J, Leuning R (1994) Relationships among maximum stomatal conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Annu Rev Ecol Syst 25:629–660

    Article  Google Scholar 

  • Tanaka T, Yamaguchi J, Takeda Y (1998) Measurement of forest canopy structure with a laser plane range-finding method — development of a measurement system and applications to real forests. Agric For Meteorol 91(3–4): 149–160

    Article  Google Scholar 

  • Van den Burg J (1990) Foliar analysis for determination of tree nutrient status — a complication of literature data. “De Dorschkamp”, Institute for Forestry and Urban Ecology, Wageningen, the Netherlands

    Google Scholar 

  • Wrzesinsky T, Klemm O (2000) Summertime fog chemistry at a mountainous site in central Europe. Atmos Environ 34:1487–1496

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fleck, S., Schmidt, M., Köstner, B., Faltin, W., Tenhunen, J.D. (2004). Impacts of Canopy Internal Gradients on Carbon and Water Exchange of Beech and Oak Trees. In: Matzner, E. (eds) Biogeochemistry of Forested Catchments in a Changing Environment. Ecological Studies, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06073-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06073-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05900-1

  • Online ISBN: 978-3-662-06073-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics