Skip to main content

Bacterial Phospholipases

  • Chapter
Bacterial Protein Toxins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 145))

Abstract

Pioneering work by MacFarlane and Knight showed for the first time that a bacterial toxin — the α-toxin of Clostridium perfringens — also had enzymatic activity as a phospholipase C (PLC; MacFarlane and Knight 1941). This finding stimulated great interest not only in the α-toxin but also in the potentially toxic activity of PLC enzymes produced by other bacteria and in the mechanisms that control the production of these proteins. In addition to the PLCs, bacteria have been shown to produce other phospholipases, such as phospholipase Ds (PLDs) and phospholipase As (PLAs), which differ in the site of phospholipid cleavage (Fig. 1). Today, many phospholipases, produced by both pathogenic and non-pathogenic bacteria, have been described and characterised, but only a few of these enzymes have been shown to be lethal toxins. Nevertheless, some of the enzymes considered to be non-toxic have been shown to play important roles in the pathogenesis of disease. Recent studies have suggested that lethality is a rather crude indicator of the potential roles of these enzymes in disease and that many of these phospholipases appear to exert their effects by allowing the bacteria to colonise the host or by perturbing the metabolism of host cells rather than by directly damaging the host (Titball 1993; Songer 1997). These findings have challenged the conventional criteria by which a bacterial product is considered to be a toxin. The aim of this chapter is to review the broad spectrum of bacterial phospholipases, to discuss the mechanisms by which the expression of phospholipaseencoding genes are regulated, to examine the ways in which these enzymes interact with host cells at a molecular level and to illustrate the ways in which bacterial phospholipases contribute to the pathogenesis of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Awad MM, Bryant AE, Stevens DL, Rood JI (1995) Virulence studies on chromosomal a-toxin and 0-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of a-toxin in Clostridium perfringens-mediated gas gangrene. Mol Microbiol 15: 191–202

    Article  CAS  PubMed  Google Scholar 

  • Ba-Them W, Lyristis M, Ohtani K, Nisbet IT, Hayashi H, Rood JI, Shimizu T (1996) The virRivirS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J Bacteriol 178: 2514–2520

    Google Scholar 

  • Baine WB (1988) A phospholipase C from the Dallas 1E strain of Legionella pneumophila serogroup 5: purification and characterisation of conditions for optimal activity with an artificial substrate. J Gen Microbiol 134: 489–498

    CAS  PubMed  Google Scholar 

  • Böckmann R, Dickneite C, Middendorf B, Goebel W, Sokolovic Z (1996) Specific binding of the Listeria monocytogenes transcriptional regulator PrfA to target sequences requires additional factor(s) and is influenced by iron. Mol Microbiol 22: 643–53

    Article  PubMed  Google Scholar 

  • Bohne J, Sokolovic Z, Goebel W (1994) Transcriptional regulation of prfA and PrfAregulated virulence genes in Listeria monocytogenes. 11: 1141–1150

    Google Scholar 

  • Bowman MH, Ottolenghi AC, Mengel CE (1971) Effects of phospholipase C on human erythrocytes. J Memb Biol 4: 156–164

    Article  CAS  Google Scholar 

  • Bryant AE, Stevens DL (1996) Phospholipase C and perfringolysin O from Clostridium perfringens upregulate endothelial cell-leukocyte adherence molecule 1 and intercellular leukocyte adherence molecule 1 expression and induce interleukin-8 synthesis in cultured human umbilical vein endothelial cells. Infect Immun 64: 358–362

    CAS  PubMed  Google Scholar 

  • Bunting M, Lorant DE, Bryant AE, Zimmerman GA, McIntyre TM, Stevens DL, Prescott SM (1997) a-toxin from Clostridium perfringens induces pro-inflammatory changes in endothelial cells. J Clin Invest 100: 565–574

    Google Scholar 

  • Camilli A,Tilney LG, Portnoy DA (1993) Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol 8: 143–57

    Google Scholar 

  • Carter G, White P, Fernie P, King S, Hamilton A, McLean G, Titball RW, Carr FJ (1998) Enhanced antitumour effect of liposomal daunorubicin using antibody—phospholipase-C conjugates or fusion protein. Int J Oncol 13: 819–825

    CAS  PubMed  Google Scholar 

  • Chakraborty T, Leimeister-Wachter M, Domann E, Hartj M, Goebel W, Nichterlcin T. Notermans S (1992) Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol 174: 568–74

    Google Scholar 

  • Chin JC, Watts JE (1988) Biological properties of phospholipase C purified from a fleecerot isolate of Pseudomonas aeruginosa. J Gen Microbiol 134: 2567–2575

    CAS  PubMed  Google Scholar 

  • Cole, ST, Canard B (1997) Structure, organization and evolution of the genome of Clostridium perfringens. In: Rood JI, McClane BA, Songer JO, Titball RW (eds) The clostridia: molecular biology and pathogenesis. Academic Press, London, pp 49–63

    Google Scholar 

  • Colley CM, Zwaal RFA, Roelofsen B, van Deenen LLM (1973) Lytic and non-lytic degradation of phospholipids in mammalian erythrocytes by pure phospholipases. Biochim Biophys Acta 307: 74–82

    Article  CAS  PubMed  Google Scholar 

  • Cota-Gomez A, Vasil AI, Kadurugamuwa J, Beveride TJ, Schweizer HP, Vasil ML (1997) P1cR1 and P1cR2 are putative calcium-binding proteins required for secretion of the hemolytic phospholipase C of Pseudomonas aeruginosa. Infect Immun 65: 2904–2913

    CAS  PubMed  Google Scholar 

  • Coutinho IR, Berk RS, Mammen E (1988) Platelet aggregation by a phospholipase C from Pseudomonas aeruginosa. Thromb Res 51: 495–505

    Article  CAS  PubMed  Google Scholar 

  • Crevel I, Sally U, Carne A, Katan M (1994) Purification and properties of zinc metallophospholipase C from Pseudomonas fluorescens. Eur J Biochem 224: 845–852

    Article  CAS  PubMed  Google Scholar 

  • Cuevas WA, Songer JG (1993) Arcanobacterium haemolyticimi phospholipase D is genetically and functionally similar to Corynebacteriuni pseudotuherculosis phospholipase D. Infect Immun 61: 4310–4316

    Google Scholar 

  • De Silva NS, Quinn PA (1987) Rapid screening for phospholipase C activity in mycoplasmas. J Clin Microbiol 25: 729–731

    PubMed  Google Scholar 

  • Dickneite C, Bockmann R, Spory A, Goebel W, Sokolovic Z (1998) Differential interaction of the transcription factor PrfA and the PrfA-activating factor (Paf) of Listeria monocytogenes with target sequences. Mol Microbiol 27: 915–928

    Article  CAS  PubMed  Google Scholar 

  • Dramsi S, Kocks C, Forestier C, Cossart P (1993) Internalin-mediated invasion of epithelial cells by Listeria monocytogenes is regulated by the bacterial growth state, temperature and the pleiotropic activator prfA. Mol Microbiol 9: 931–41

    Article  CAS  PubMed  Google Scholar 

  • Drevets, DA (1998) Listeria monocytogenes virulence factors that stimulate endothelial cells. Infect Immun 66: 232–238

    Google Scholar 

  • Engelbrecht F, Chun SK, Ochs C. Hess J, Lottspeich F, Goebel W, Sokolovic Z (1996) A new PrfA-regulated gene of Listeria monocytogenes encoding a small, secreted protein which belongs to the family of internalins. Mol Microbiol 21: 823–837

    CAS  Google Scholar 

  • Exton JH (1990) Signalling through phosphatidylcholine breakdown. J Biol Chem 265: 1–4

    CAS  PubMed  Google Scholar 

  • Fiore AE, Michalski JM, Russell RG, Sears CL, Kaper JB (1997) Cloning, characterisation, and chromosomal mapping of a phospholipase (lecithinase) produced by Vihrio cholerae. Infect Immun 65: 3112–3117

    CAS  PubMed  Google Scholar 

  • Flores-Díaz M, Alape-Girón A, Persson B, Pollosello R Moos M, Von Eichel-Streiber C, Thelestam M, Florin I (1997) Cellular UDP—glucose deficiency caused by a single point mutation in the UDP—glucose pyrophosphorylase gene. J Biol Chem 272: 23784–23791

    Article  PubMed  Google Scholar 

  • Flores-Diaz M, Alape-Girón A, Titball RW, Moos M, Guillouard I, Cole S, Howells A M, Von Eichel-Streiber C, Thelestam M (1998) UDP—glucose deficiency causes hypersensitivity to the cytotoxic effect of Clostridium perfringens phospholipase C. J Biol Chem 273: 24433–24438

    Article  CAS  PubMed  Google Scholar 

  • Freitag NE, Portnoy DA (1994) Dual promoters of the Listeria monocytogenes pjrA transcriptional activator appear essential in vitro but are redundant in vivo. Mol Microbiol 12: 845–853

    Article  CAS  PubMed  Google Scholar 

  • Freitag NE, Rong L, Portnoy DA (1993) Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect Immun 61: 2537–2544

    CAS  PubMed  Google Scholar 

  • Fujii Y, Sakurai J (1989) Contraction of the rat isolated aorta caused by Clostridium perfringens a-toxin (phospholipase C); evidence for the involvement of arachidonic acid metabolism. Brit J Pharmacol 97: 119–124

    Article  CAS  Google Scholar 

  • Granström M, Erickson A, Strandvik B, Wretlind B, Pavlovskis OR, Berka R, Vasil M (1984) Relationship between antibody response to Pseudomonas aeruginosa exoproteins and colonisation/infection in patients with cystic fibrosis. Acta Paediatr Scand 73: 772–777

    Article  PubMed  Google Scholar 

  • Guillouard I, Garnier T, Cole ST (1996) Use of site-directed mutagenesis to probe structure-function relationships of a-toxin from Clostridium perfringens. Infect Immun 64: 2440–2444

    PubMed  Google Scholar 

  • Guillouard I, Alzari PM, Saliou B, Cole ST (1997) The carboxy-terminal Cz-like domain of the a-toxin from Clostridium perfringens mediates calcium-dependent membrane recognition. Mol Microbiol 26: 867–876

    Article  CAS  PubMed  Google Scholar 

  • Gustafson C, Sjodahl R,Tagesson C (1990) Phospholipase C activation and arachidonic acid release in intestinal epithelial cells from patients with Crohn’s disease. Scand J Gastroenterol 25: 1151–1160

    CAS  Google Scholar 

  • Hansen S, Hansen LK, Hough E (1993a) The crystal structure of tris-inhibited phospholipase C from Bacillus cereus at 1.9-A resolution. J Mol Biol 231: 870–876

    Article  CAS  PubMed  Google Scholar 

  • Hansen S, Hough E, Svensson LA, Wong Y-L, Martin SF (1993b) Crystal structure of phospholipase C from Bacillus cereus complexed with a substrate analog. J Mol Biol 234: 179–187

    Article  CAS  PubMed  Google Scholar 

  • Heinz DW, Essen L-O, Williams RL (1998) Structural and mechanistic comparison of prokaryotic and eukaryotic phosphoinositide-specific phospholipases C. J Mol Biol 275: 635–650

    Article  CAS  PubMed  Google Scholar 

  • Henner DJ, Yang M, Chen E, Hellmiss R, Rodriguez H, Low MG (1988) Sequence of the Bacillus thuringiensis phosphatidylinositol-specific phospholipase C. Nuc Acids Res 16: 10383

    Article  CAS  Google Scholar 

  • Hodgson AL, Krywult J, Corner LA, Rothel JS, Radford AJ (1992) Rational attenuation of Corynebacterium pseudotuberculosis: potential cheesy gland vaccine and live delivery vehicle. Infect Immun 60: 2900–2905

    CAS  PubMed  Google Scholar 

  • Holm BA, Keicher L, Liu M, Sokolowski J, Enhorning G (1991) Inhibition of pulmonary surfactant function by phospholipases. J Appl Physiol 71: 317–321

    CAS  PubMed  Google Scholar 

  • Hough E, Hansen LK, Birkness B, Jynge K, Hansen S, Hordik A, Little C, Dodson E, Derewenda Z (1989) High resolution (1.5.x) crystal structure of phospholipase C from Bacillus cereus. Nature 338: 357–360

    Article  CAS  PubMed  Google Scholar 

  • Hübl W, Mostbeck B, Hartleb H, Pointner H, Koller K, Bayer PM (1993) Investigation of the pathogenesis of massive hemolysis in a case of Clostridium perfringens septicemia. Ann Hematol 67: 145–147

    Article  PubMed  Google Scholar 

  • Ikezawa H (1986) The physiological action of bacterial phosphatidylinositol-specific phospholipase C The release of ectoenzymes and other effects. J Toxicol Toxin Reviews 5: 1–24

    Article  CAS  Google Scholar 

  • JohansenT, Holm T, Guddal PH, Sletten K, Haugli FB, Little C (1988) Cloning and sequencing of the gene encoding the phosphatidylcholine-preferring phospholipase C of Bacillus cereus. Gene 65: 293–304

    Google Scholar 

  • Johansen KA, Gill RE, Vasil ML (1996) Biochemical and molecular analysis of phospholipase C and phospholipase D activity in mycobacteria. Infect Immun 64: 3259–3266

    CAS  PubMed  Google Scholar 

  • Jolivet-Reynaud C, Moreau H, Alouf JE (1988) Assay methods for a toxin from Clostridium perfringens: phospholipase C. Methods Enzymol 165: 293–297

    Article  CAS  PubMed  Google Scholar 

  • Katayama S-I, Matsushita O, Minami J, Mizobuchi S, Okabe A (1993) Comparison of the a-toxin genes of Clostridium perfringens type A and C strains: evidence for extragenic regulation of transcription. Infect Immun 61: 457–463

    CAS  PubMed  Google Scholar 

  • Klarsfeld AD, Goossens PL, Cossart P (1994) Five Listeria monocytogenes genes preferentially expressed in infected mammalian cells: plcA, purH, purD, pyrE and an arginine ABC transporter gene, arpJ. Mol Microbiol 13: 585–597

    Article  CAS  PubMed  Google Scholar 

  • König B, Jaeger K-E, Sage AE, Vasil ML, König W (1996) Role of Pseudonionas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes and monocytes). Infect Immun 64: 3252–3258

    PubMed  Google Scholar 

  • König B, Vasil ML, König W (1997) Role of hemolytic and non-hemolytic phospholipase C from Pseudomonas aeruginosa for inflammatory mediator release from human granulocytes. Int Arch Allergy Immunol 112: 115–1124

    Article  PubMed  Google Scholar 

  • Kothary MH, Kreger AS (1985) Purification and characterisation of an extracellular cytolysin produced by Vibrio damsela. Infect Immun 49: 25–31

    CAS  PubMed  Google Scholar 

  • Kreger AS, Bernheimer AW, Etkin LA, Daniel LW (1987) Phospholipase D activity of Vibrio damsela cytolysin and its interaction with sheep erythrocytes. Infect Immun 55: 3209–3212

    CAS  PubMed  Google Scholar 

  • Krug EL, Kent C (1984) Phospholipase C from Clostridium perfringens: preparation and characterisation of homogenous enzyme. Arch Biochem Biophys 231: 400–410

    Article  CAS  PubMed  Google Scholar 

  • Kuppe A, Evans LM, McMillen DA, Griffith OH 1989. Phosphatidylinositol-specific phospholipase C of Bacillus cereus: cloning, sequencing and relationship to other phospholipases. J Bacteriol 171: 6077–6083

    CAS  PubMed  Google Scholar 

  • Lampidis R, Gross R, Sokolovic Z, Goebel W, Kreft J (1994) The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp—Fnr family of transcription regulators. Mol Microbiol 13: 141–151

    Article  CAS  PubMed  Google Scholar 

  • Landfald B, Strom AR (1986) Choline-glycine betaine pathway confers high level of osmotic tolerance in Escherichia coli. J Bacteriol 165: 849–855

    CAS  PubMed  Google Scholar 

  • Leao SC, Rocha CL, Murillo LA, Parra CA, Patarroyo ME (1995) A species-specific nucleotide sequence of Mycobacterium tuberculosis encodes a protein that exhibits hemolytic activity when expressed in Escherichia coli. Infect Immun 63: 4301–4306

    CAS  PubMed  Google Scholar 

  • Leimeister-Wächter M, Domann E, Chakraborty T (1991) Detection of a gene encoding a phosphatidylinositol-specific phospholipase C that is coordinately expressed with listeriolysin in Listeria monocytogenes. Mol Microbiol 5: 361–366

    Article  PubMed  Google Scholar 

  • Leimeister-Wachter, M, Domann, E and Chakraborty, T (1992) The expression of virulence genes in Listeria monocytogenes is thermoregulated. J Bacteriol 174: 947–952

    CAS  PubMed  Google Scholar 

  • Levine L, Xiao D-M, Little C (1988) Increased arachidonic acid metabolites from cells in culture after treatment with phosphatidylcholine-hydrolysing phospholipase C from Bacillus cereus. Prostaglandins 34: 633–642

    Google Scholar 

  • Little C, Rumsby MG, Johansen S (1981) Phospholipase C — a useful indicator of erythrocyte aging in vitro. J Appl Biochem 3: 42–47

    CAS  Google Scholar 

  • Lyristis M, Bryant AE, Sloan J, Awad MM, Nisbet IT, Stevens DL, Rood J I (1994) Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol Microbiol 12: 761–777

    Article  CAS  PubMed  Google Scholar 

  • MacFarlane MG (1955) On the biochemical mechanism of action of gas-gangrene toxin. In: Mechanisms of microbial pathogenicity (5th Symposium of the Society for General Microbiology), Cambridge University Press, Cambridge, pp 57–77

    Google Scholar 

  • MacFarlane MG, Knight BCJG (1941) The biochemistry of bacterial-toxin-I lecithinase activity of C. welchii toxins. Biochem J 35: 884–902

    CAS  PubMed  Google Scholar 

  • Marquis, H, Doshi V, Portnoy DA (1995) The broad-range phospholipase C and a metalloprotease mediate listeriolysin-O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect Immun 63: 4531–4534

    CAS  PubMed  Google Scholar 

  • Matsushita C, Matsushita O, Katayama S, Minami J, Takai K, Okabe A (1996) An upstream activating sequence containing curved DNA involved in activation of the Clostridium perfringens plc promoter. Microbiology 142: 2561–2566

    Article  CAS  PubMed  Google Scholar 

  • McNamara PJ, Bradley GA, Songer JG (1994) Targeted mutagenesis of the phospholipase-D gene results in decreased virulence of Corynebacterium pseudotuberculosis. Mol Microbiol 12: 921–930

    Article  CAS  PubMed  Google Scholar 

  • McNamara PJ, Cuevas WA, Songer JG (1995) Toxic phospholipases D of Corynebacterium pseudotuberculosis, C ulcerans and Arcanobacterium haemolyticum: cloning and sequence homology. Gene 156: 113–118

    Article  CAS  PubMed  Google Scholar 

  • Mengaud J, Dramsi S, Gouin E, Vazquez-Boland JA, Milon G, Cossart P (1991) Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol 5: 2273–2283

    Article  CAS  PubMed  Google Scholar 

  • Meyers DJ, Palmer KC, Bale LA, Kernacki K, Preston M, Brown T, Berk RS (1992) In vivo and in vitro toxicity of phospholipase C from Pseudomonas aeruginosa. Toxicon 30: 161–169

    Article  CAS  PubMed  Google Scholar 

  • Möllby R (1978) Bacterial phospholipases. In: Jeljaszewicz J, Wadström T (eds) Bacterial toxins and cell membranes. Academic Press, London. pp 367–424

    Google Scholar 

  • Moreau H, Pieroni G, Jolivet-Reynaud C, Alouf JE, Verger R (1988) A new kinetic approach for studying phospholipase C (Clostridium perfringens a-toxin) activity on phospholipid monolayers. Biochem 27: 2319–2323

    Article  CAS  Google Scholar 

  • Moser J, Gerstel B, Meyer JEW, Chakraborty T, Wehland J, Heinz DW (1997) Crystal structure of the phosphatidylinositol-specific phospholipase C from the human pathogen Listeria monocytogenes. J Mol Biol 273: 269–282

    Article  CAS  PubMed  Google Scholar 

  • Nagahama M, Okagawa Y, Nakayama T, Nishioka E, Sakurai J (1995) Site-directed mutagenesis of histidine residues in Clostridium perfringens a-toxin. J Bacteriol 177: 1179–1185

    CAS  PubMed  Google Scholar 

  • Nagahama M, Michiue K, Sakurai J (1996) Membrane-damaging action of Clostridium perfringens a-toxin on phospholipid liposomes. Biochim Biophys Acta 1280: 120–126

    Article  PubMed  Google Scholar 

  • Nagahama M, Nakayama T, Michiue K, Sakurai J (1997) Site-specific mutagenesis of Clostridium perfringens a-toxin: replacement of Asp-56 Asp-130 or Glu-152 causes loss of enzymatic and hemolytic activities. Infect Immun 65: 3489–3492

    CAS  PubMed  Google Scholar 

  • Nakamura S, Shimamura T, Hayase M, Nishida S (1973) Numerical taxonomy of saccharolytic clostridia particularly Clostridium perfringens-like strains: descriptions of Clostridium absonum spp. and Clostridium paraperfringens. Int J Syst Bacteriol 23: 419–429

    Article  Google Scholar 

  • Naylor CE, Eaton JT, Howells A, Justin N, Moss DS, Titball RW, Basak AK (1998) Structure of the key toxin in gas gangrene. Nature Struct Biol 5: 738–746

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya, M, Matsushita O, Minami J, Sakamoto H, Nakano M, Okabe A (1994) Role of a-toxin in Clostridium perfringens infection determined by using recombinants of C. perfringens and Bacillus subtilis. Infect. Immun. 62: 50325039

    Google Scholar 

  • Nishizuka Y (1992) Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607–614

    Article  CAS  PubMed  Google Scholar 

  • Ochi S, Hashimoto K, Nagahama M, Sakurai J (1996) Phospholipid metabolism induced by Clostridium perfringens a-toxin elicits a hot-cold type of hemolysis in rabbit erythrocytes. Infect Immun 64: 3930–3933

    CAS  PubMed  Google Scholar 

  • Ohsaka A, Tsuchiya M, Oshio C, Miyaira M, Suzuki K, Yamakawa Y (1978) Aggregation of platelets in the micro-circulation of the rat induced by the a-toxin (phospholipase C) of Clostridium perfringens. Toxicon 16: 333–341

    Article  CAS  PubMed  Google Scholar 

  • Ostroff RM, Wretlind B, Vasil ML (1989) Mutations in the haemolytic phospholipaseC operon result in decreased virulence of Pseudomonas aeruginosa PAO1 grown under phosphate-limiting conditions. Infect Immun 57: 1369–1373

    CAS  PubMed  Google Scholar 

  • Ostroff RM, Vasil AI, Vasil ML (1990) Molecular comparison of a non-haemolytic and a haemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol 172: 5915–5923

    CAS  PubMed  Google Scholar 

  • Ottlecz A, Romero JJ, Hazell SL, Graham DY, Lichtenberger LM (1993) Phospholipase activity of Helicohacter pylori and its inhibition by bismuth salts. Dig Dis Sci 38: 2071–2080

    Article  CAS  PubMed  Google Scholar 

  • Park SF, Kroll RG (1993) Expression of listeriolysin and phosphatidylinositol — specific phospholipase C is repressed by the plant-derived molecule cellobiose in Listeria monocytogenes. Mol Microbiol 8: 653–661

    Article  CAS  PubMed  Google Scholar 

  • Poyart C, Abachin E, Razafimanantsoa I, Berche P (1993) The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation. Infect Immun 61: 1576–1580

    CAS  PubMed  Google Scholar 

  • Pritchard AE, Vasil ML (1986) Nucleotide sequence and expression of a phosphate-regulated gene encoding a secreted hemolysin of Pseudomonas aeruginosa. J Bacteriol 167: 291–298

    CAS  PubMed  Google Scholar 

  • Projan SJ, Kornblum J, Kreiswirth B, Moghazeh SL, Eiser W, Novick RP (1989) Nucleotide sequence of the ß-hemolysin gene of Staphylococcus aureu.s. Nue Acids Res 17: 3305

    Article  CAS  Google Scholar 

  • Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899–1902

    Article  CAS  PubMed  Google Scholar 

  • Raveneau J, Geoffroy C, Beretti JL, Gaillard JL, Alouf JE, Berche P (1992) Reduced virulence of a Listeria monocytogenes phospholipase-deficient mutant obtained by transposon insertion into the zinc metalloprotease gene. Infect Immun 60: 916–921

    CAS  PubMed  Google Scholar 

  • Renzoni A, Klarsfeld A, Dramsi S, Cossart P (1997) Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive. Infect Immun 65: 1515–1518

    CAS  PubMed  Google Scholar 

  • Rood, JI, Lyristis M (1995) Regulation of extracellular toxin production in Clostridium perfringens. Trends Microbiol 3: 192–196

    Article  CAS  PubMed  Google Scholar 

  • Sage, AE, Vasil M L (1997) Osmoprotectant-dependent expression of 1)1(1 1, encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in Pseudomonas aeruginosa PAOI. J Bacteriol 179: 4874–4881

    CAS  PubMed  Google Scholar 

  • Sage AE, Vasil AI, Vasil ML (1997) Molecular characterisation of mutants affected in the osmoprotectant-dependent induction of phospholipase C in Pseudomonas aeruginosa PAOI. Mol Microbiol 23: 43–56

    Article  CAS  PubMed  Google Scholar 

  • Sakurai J, Fujii Y, Shirotani M (1990) Contraction induced by Clostridium perfringens a-toxin in the isolated rat ileum. Toxicon 28: 411–418

    Article  CAS  PubMed  Google Scholar 

  • Sakurai J, Ochi S, Tanaka H (1993) Evidence for coupling of Clostridium perfringens a-toxin-induced hemolysis to stimulated phosphatidic acid formation in rabbit erythrocytes. Infect Immun 61: 3711–3718

    CAS  PubMed  Google Scholar 

  • Sakurai J, Ochi S, Tanaka H (1994) Regulation of Clostridium perfringens a-toxinactivated phospholipase C in rabbit erythrocyte membranes. Infect Immun 62: 717–721

    CAS  PubMed  Google Scholar 

  • Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220: 568–575

    Article  CAS  PubMed  Google Scholar 

  • Schlüter D, Domann E, Buck C, Hain T, Hof H, Chakraborty T, Deckert-Schlüter M (1998) Phosphatidylcholine-specific phospholipase C from Listeria monocytogenes is an important virulence factor in murine cerebral listeriosis. Infect Immun 66: 5930–5938

    PubMed  Google Scholar 

  • Segers RPAM, Van der Drift A, De Njis A, Corcione E Van der Zeijst BAM, Gaastra W (1990) Molecular analysis of a sphingomyelinase C gene from Leptospira interrogans serovar hardjo. Infect Immun 58: 2177–2185

    CAS  Google Scholar 

  • Sheehan B, Kocks C, Dramsi S, Gouin E, Klarsfeld AD, Mengaud J, Cossart P (1994) Molecular and genetic determinants of the Listeria monocytogenes infectious process. Curr Topics Microbiol Immunol 192: 187–216

    Article  CAS  Google Scholar 

  • Sheehan B, Klarsfeld A, Ebright R, Cossart P (1996) A single substitution in the putative helix—turn—helix motif of the pleiotropic activator PrfA attenuates Listeria monocytogenes virulence. Mol Microbiol 20: 785–797

    Article  CAS  PubMed  Google Scholar 

  • Shen B-F, Tai PC, Pritchard AE, Vasil ML (1987) Nucleotide sequence and expression in Escherichia coli of the in-phase overlapping Pseudomonas aeruginosa plcR genes. J Bacteriol 169: 4602–4607

    CAS  PubMed  Google Scholar 

  • Shimizu T, Ba-Thein W, Tamaki M, Hayashi H (1994) The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin-O, collagenase, and hemagglutinin in Clostridium perfringens. J Bacteriol 176: 1616–1623

    CAS  PubMed  Google Scholar 

  • Shinoda S, Matsuoaka H, Tsuchie T, Miyoshi S-I, Yamamoto S, Taniguchi H, Miuguchi Y (1991) Purification and characterisation of a lecithin-dependent haemolysin from Escherichia coli transformed by a Vihrio parahaemolyticus gene. J Gen Microbiol 137: 2705–2711

    CAS  PubMed  Google Scholar 

  • Shortridge VD, Lazdunski A, Vasil ML (1992) Osmoprotectants and phosphate regulate expression of phospholipase C in Pseudomonas aeruginosa. Mol Microbiol 6: 863–871

    Article  CAS  PubMed  Google Scholar 

  • Sibelius U, Chakraborty T, Krogel B, Wolf J, Rose F, Schmidt R, Wehland J, Seeger W, Grimminger F (1996) The listerial exotoxins listeriolysin and phosphatidylinositol-specific phospholipase C synergize to elicit endothelial cell phosphoinositide metabolism. J Immunol 157: 4055–4060

    CAS  PubMed  Google Scholar 

  • Simmons CP, Hodgson, AL, Strugnell RA (1997) Attenuation and vaccine potential of aroQ mutants of Corynebacterium pseudotuberculosis. Infect Immun 65: 30483056

    Google Scholar 

  • Simmons CP, Dunstan SJ, Tachedjian M, Krywult J, Hodgson AL, Strugnell RA (1998) Vaccine potential of attenuated mutants of Corynehacterium pseudotuberculosis in sheep. Infect Immun 66: 474–479

    CAS  PubMed  Google Scholar 

  • Smith, GA, Portnoy DA (1997) How the Listeria monocytogenes ActA protein con- verts actin polymerization into a motile force. Trends Microbiol 5: 272–276

    Article  CAS  PubMed  Google Scholar 

  • Smith GA, Marquis H, Jones S, Johnston NC, Portnoy DA, Goldfine H (1995) The two distinct phospholipase C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun 63: 4231–4237

    CAS  PubMed  Google Scholar 

  • Sokolovic, Z, Riedel, J, Wuenscher, M and Goebel, W (1993) Surface-associated, PrfAregulated proteins of Listeria monocytogenes synthesized under stress conditions. Mol Microbiol 8: 219–227

    Article  CAS  PubMed  Google Scholar 

  • Songer JG (1997) Bacterial phospholipases and their role in virulence. Trends in Microbiol 5: 156–161

    Article  CAS  Google Scholar 

  • Stevens, D, Bryant A (1997) Pathogenesis of Clostridium perfringens infection: mechanisms and mediators of shock. Clin Infect Dis 25 (Suppl 2): S160 - S164

    Article  PubMed  Google Scholar 

  • Stevens DL, Tweten RK, Awad MM, Rood JI, Bryant AE (1997) Clostridia] gas gangrene: evidence that a and 9 toxins differentially modulate the immune response and induce acute tissue necrosis. J Infect Dis 176: 189–195

    Article  CAS  PubMed  Google Scholar 

  • Sugahara T, Takahashi T, Yamaya S, Ohsaka A (1976) In vitro aggregation of platelets induced by a-toxin (phospholipase C) of Clostridium perfringens. Jap J Med Sci Biol 29: 255–263

    CAS  PubMed  Google Scholar 

  • Taguchi R, Asahi Y, Ikezawa H (1980) Purification and properties of phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis. Biochem Biophys Acta 619: 48–57

    Article  CAS  PubMed  Google Scholar 

  • Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109: 1597–1608

    Article  CAS  PubMed  Google Scholar 

  • Titball RW (1993) Bacterial phospholipases C. Microbiol Rev 57: 347–366

    CAS  PubMed  Google Scholar 

  • Titball RW, Rubidge T (1990) The role of histidine residues in the a-toxin of Clostridium perfringens. FEMS Microbiol Letts 68: 261–266

    CAS  Google Scholar 

  • Titball RW, Hunter SEC, Martin KL, Morris BC, Shuttleworth AD, Rubidge T, Anderson DW, Kelly DC (1989) Molecular cloning and nucleotide sequence of the a-toxin (phospholipase C) of Clostridium perfringens. Infect Immun 57: 367376

    Google Scholar 

  • Titball RW, Leslie DL, Harvey S, Kelly DC (1991) Haemolytic and sphingomyelinase activities of Clostridium perfringens a-toxin are dependent on a domain homologous to that of an enzyme from the human arachidonic acid pathway. Infect Immun 59: 1872–1874

    CAS  PubMed  Google Scholar 

  • Titball RW, Fearn AM, Williamson ED (1993) Biochemical and Immunological properties of the C-terminal domain of the a-toxin of Clostridium perfringens. FEMS Microbiol Letts 110: 45–50

    Article  CAS  Google Scholar 

  • Toyonaga T, Matsushita O, Katayama S-I, Minami J, Okabe A (1992) Role of the upstream region containing an intrinsic DNA curvature in the negative regulation of the phospholipase-C gene of Clostridium perfringens. Microbiol Immunol 36: 603–613

    CAS  PubMed  Google Scholar 

  • Truett AP III, King LEJr (1993) Sphingomyelinase D; a pathogenic agent produced by bacteria and arthropods. Adv Lip Res 26: 275–291

    CAS  Google Scholar 

  • Tso JY, Siebel C (1989) Cloning and expression of the phospholipase C gene from Clostridium perfringens and Clostridium bifermentans. Infect Immun 57: 468–476

    CAS  PubMed  Google Scholar 

  • Tsutsui K Minami J, Matsushita O, Katayama S I, Taniguchi Y, Nakamura S, Nishioka M, Okabe A (1995) Phylogenetic analysis of phospholipase C genes from Clostridium perfringens types A to E and Clostridium novyi. J Bacteriol 177: 7164–7170

    CAS  PubMed  Google Scholar 

  • Van Deenen LLM, Demel RA, Guerts van Kessel WSM, Kamp HH, Roelofsen B, Verkleij AJ, Wirtz KWA, Zwaal RFA (1976) Phospholipases and monolayers as tools in studies on membrane structure In: Hatch Y, Djavadi-Ohaniance L (eds) The structural basis of membrane function. Academic Press, New York and London, pp 21–38

    Google Scholar 

  • Vasil ML, Kreig, DP, Kuhns JS, Ogle JW, Shortridge VD, Ostroff KM, Vasil AI (1990) Molecular analysis of haemolytic and phospholipase C activities of Pseudomonas cepacia. Infect Immun 58: 4020–4029

    CAS  PubMed  Google Scholar 

  • Vasil ML, Vasil A, Shortridge V (1994) Phosphate and osmoprotectants in the pathogenesis of Pseudomonas aeruginosa. In: Torriani-Gorrini E, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, D.C., pp 126–132

    Google Scholar 

  • Vazquez-Boland J-A, Kocks C, Dramsi S, Ohayon H, Geoffroy C. Mengaud J, Cossart P (1992) Nucleotide sequence of the lecithinase operon of Listeria nunurcytogenes and possible role of lecithinase in cell-cell spread. Infect Immun 60: 219–230

    CAS  PubMed  Google Scholar 

  • Waite M (1987) Handbook of lipid research 5. The phospholipases Plenum Press New York and London

    Google Scholar 

  • Weinberg ED (1974) Iron and susceptibility to infectious disease. Science 134: 952–955

    Article  Google Scholar 

  • Williamson ED, Titball RW (1993) A genetically engineered vaccine against the a-toxin of Clostridium perfringens also protects mice against experimental gas gangrene. Vaccine 11: 1253–1258

    Article  CAS  PubMed  Google Scholar 

  • Yamada A, Tsukagoshi N, Ukada S, Sasaki T, Makino S, Nakamura S, Little C,’Fornita M, Ikezawa H (1988) Nucleotide sequence and expression in Escherichia coli of the gene coding for sphingomyelinase of Bacillus cereus. Fur J Biochem 175: 213–220

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Titball, R.W., Rood, J.I. (2000). Bacterial Phospholipases. In: Aktories, K., Just, I. (eds) Bacterial Protein Toxins. Handbook of Experimental Pharmacology, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05971-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05971-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08540-6

  • Online ISBN: 978-3-662-05971-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics