Skip to main content

Computing Simplicial Homology Based on Efficient Smith Normal Form Algorithms

  • Conference paper
Algebra, Geometry and Software Systems

Abstract

We recall that the calculation of homology with integer coefficients of a simplicial complex reduces to the calculation of the Smith Normal Form of the boundary matrices which in general are sparse. We provide a review of several algorithms for the calculation of Smith Normal Form of sparse matrices and compare their running times for actual boundary matrices. Then we describe alternative approaches to the calculation of simplicial homology. The last section then describes motivating examples and actual experiments with the GAP package that was implemented by the authors. These examples also include as an example of other homology theories some calculations of Lie algebra homology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eric Babson, Anders Björner, Svante Linusson, John Shareshian and Volkmar Welker Complexes of not i-connected graphs. Topology 38 (1999) 271–299.

    Article  MathSciNet  MATH  Google Scholar 

  2. Achim Bachem and Ravindran Kannan. Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. Comput. 8 499–507 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  3. William W. Boone. Certain simple unsolvable problems in group theory. Indig. Math. 16 231–237 (1955).

    Google Scholar 

  4. Alfred Brauer. Limits for the characteristic roots of a matrix. I. Duke Math. J. 13 387–395 (1946).

    Article  MathSciNet  MATH  Google Scholar 

  5. Alfred Brauer. Limits for the characteristic roots of a matrix. II. Duke Math. J. 14 21–26 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  6. Richard A. Brualdi and Stephen Mellendorf. Regions in the complex plane containing the eigenvalues of a matrix. American Mathematical Monthly 101 975–985 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  7. Antonio Capani, Gianfranco Niesi and Lorenzo Robbiano, CoCoA, a system for doing Computations in Commutative Algebra. Available via anonymous ftp from: cocoa.dima.unige.it

    Google Scholar 

  8. David Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry,Springer, 1993.

    Google Scholar 

  9. Jean-Guillaume Dumas, Frank Heckenbach, B. David Saunders and Volkmar Welker. Simplicial Homology, a (proposed) share package for GAP, March 2000. Manual(http://www.cis.udel.edu/~dumas/Homology).

  10. Jean-Guillaume Dumas, B. David Saunders and Gilles Villard. On efficient sparse integer matrix Smith normal form computations. J. Symb. Comp. 32 71–99 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. Pierre Dusart. Autour de la fonction qui compte le nombre de nombres premiers. PhD thesis, Université de Limoges, 1998.

    Google Scholar 

  12. William G. Dwyer. Homology of integral upper-triangular matrices. Proc. Amer. Math. Soc. 94 523–528 (1985).

    Google Scholar 

  13. Wayne Eberly and Erich Kaltofen. On randomized Lanczos algorithms. In Wolfgang W. Küchlin, editor, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, Maui, Hawaii, pages 176–183. ACM Press, New York, July 1997. Computing Simplicial Homology 205

    Google Scholar 

  14. Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization of monotone disjunctive normal forms, J. Algorithms 21 (1996) 618–628.

    Article  MathSciNet  MATH  Google Scholar 

  15. The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.2; 2000. (http://www.gap-system.org)

  16. Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge University Press, New York, NY, USA, 1999.

    Google Scholar 

  17. Mark W. Giesbrecht. Probabilistic Computation of the Smith Normal Form of a Sparse Integer Matrix. Lecture Notes in Comp. Sci. 1122, 173–186. Springer, 1996.

    Google Scholar 

  18. Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore, MD, USA, third edition, 1996.

    Google Scholar 

  19. Daniel R. Grayson and Michael E. Stillman, Macaulay 2, a software system for research in algebraic geometry,Available at http://www.math.uiuc.edu/ Macaulay2/

  20. Melvin Hochster. Cohen-Macaulay rings, combinatorics, and simplicial complexes. Ring Theory II, Proc. 2nd Okla. Conf. 1975. Lecture Notes in Pure and Applied Mathematics. Vol. 26. New York. Marcel Dekker. 171–223 (1977).

    Google Scholar 

  21. Phil Hanlon. A survey of combinatorial problems in Lie algebra homology. Billera, Louis J. (ed.) et al., Formal power series and algebraic combinatorics. Providence, RI: American Mathematical Society. DIMACS, Ser. Discrete Math. Theor. Comput. Sci. 24, 89–113, 1996.

    Google Scholar 

  22. Iztok Hozo, Inclusion of poset homology into Lie algebra homology. J. Pure Appl. Algebra 111 169–180 (1996).

    Google Scholar 

  23. Costas S. Iliopoulos. Worst case bounds an algorithms for computing the canonical structure of finite Abelian groups and the Hermite and Smith normal forms of an integer matrix. SIAM J. Comput. 18 (1989) 658–669.

    Article  MathSciNet  MATH  Google Scholar 

  24. Costas S. Iliopoulos. Worst case bounds an algorithms for computing the canonical structure of infinite Abelian groups and solving systems of linear diophantine equations. SIAM J. Comput. 18 (1989) 670–678.

    Article  MathSciNet  MATH  Google Scholar 

  25. Gil Kalai. Algebraic Shfiting. Computational Commutative Algebra and Combinatorics Advanced Studies in Pure Math., Vol. 33. Tokyo. Math. Soc. of Japan. 121–165 (2002).

    Google Scholar 

  26. Erich Kaltofen, Wen-Shin Lee and Austin A. Lobo. Early termination in BenOr/Tiwari sparse interpolation and a hybrid of Zippel’s algorithm. In Carlo Traverso, editor, Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, Saint Andrews, Scotland, pages 192–201. ACM Press, New York, 2000.

    Chapter  Google Scholar 

  27. Volker Kaibel and Marc E. Pfetsch. Some algorithmic problems in polytope theory, this volume, pages 23–47.

    Google Scholar 

  28. Dimitris Kavvadias and Elias Stavroploulos. Evaluation of an algorithm for the transversal hypergraph problem. in: Proc. 3rd Workshop on Algorithm Engineering (WAE’99), Lecture Notes in Comp. Sci. 1668, Springer, 1999.

    Google Scholar 

  29. Anthony W. Knapp. Lie Groups, Lie Algebras, and Cohomology, Mathematical Notes 34, Princeton University Press, 1988.

    Google Scholar 

  30. Bertram Kostant. Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. Math. (2) 74 (1961) 329–387.

    Article  MathSciNet  MATH  Google Scholar 

  31. Robert H. Lewis. Fermat, a computer algebra system for polynomial and matrix computations,1997. http://www.bway.net/~lewis.

  32. James R. Munkres, Elements of Algebraic Topology, Addison-Wesley, Menlo Park, 1984.

    Google Scholar 

  33. James R. Munkres, Topology, 2nd Edition, Prentice Hall, 2000.

    Google Scholar 

  34. Sergey P. Novikov. On the algorithmic unsolvability of the word problem in group theory, Trudy Mat. Inst 44 (1955) 143.

    Google Scholar 

  35. Sarah Rees and Leonard H. Soicher An algorithmic approach to fundamental groups and covers of combinatorial cell complexes J. of Symb. Comp. 29 (2000) 59–77.

    Article  MATH  Google Scholar 

  36. Ernest Sibert, Harold F. Mattson and Paul Jackson. Finite Field Arithmetic Using the Connection Machine. In Richard Zippel, editor, Proceedings of the second International Workshop on Parallel Algebraic Computation, Ithaca, USA, volume 584 of Lecture Notes in Computer Science, 51–61. Springer, 1990.

    Google Scholar 

  37. Arne Storjohann, Near Optimal Algorithms for Computing Smith Normal Forms of Integer Matrices, Lakshman, Y. N. (ed.), Proceedings of the 1996 international symposium, on symbolic and algebraic computation, ISSAC 96, New York, NY: ACM Press. 267–274 (1996).

    Google Scholar 

  38. Olga Taussky. Bounds for characteristic roots of matrices. Duke Math. J. 15 1043–1044 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  39. Vladimir Tuchin. Homologies of complexes of doubly connected graphs. Russian Math. Surveys 52 426–427 (1997).

    Article  MathSciNet  Google Scholar 

  40. Richard S. Varga. Matrix iterative analysis. Number 27 in Springer series in Computational Mathematics. Springer, second edition, 2000.

    Google Scholar 

  41. Michelle Wachs. Topology of matching, chessboard and general bounded degree graph complexes. Preprint 2001.

    Google Scholar 

  42. Douglas H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory 32 54–62 (1986).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dumas, JG., Heckenbach, F., Saunders, D., Welker, V. (2003). Computing Simplicial Homology Based on Efficient Smith Normal Form Algorithms. In: Joswig, M., Takayama, N. (eds) Algebra, Geometry and Software Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05148-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05148-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05539-3

  • Online ISBN: 978-3-662-05148-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics