Skip to main content

Abstract

The study of the Earth System has a long tradition of using simplified models to achieve a quantitative understanding of processes that are responsible for climate change. The examples of the carbon cycle and the ocean circulation in shaping past and future climate evolution are discussed here and the development from early box models to dynamical models of reduced complexity is reviewed. The latter models are beginning to play a significant and increasing role on our way to a better understanding of the Earth System.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alley, R. B. 2000. Ice-core evidence of abrupt climate change. Proc. US Natl. Acad. Sci. 97, 1331–1334.

    Article  ADS  Google Scholar 

  2. Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C. and Clark, P. U. 1997. Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology 25, 483–486.

    Article  ADS  Google Scholar 

  3. Barber, D. C., Dyke, A., Hillaire-Marcel, C., Jennings, A. E., Andrews, J. T., Kerwin, M. W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M. D. and Gagnon, J.-M. 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–348.

    Article  ADS  Google Scholar 

  4. Blunier, T. et al. 1997. Timing of temperature variations during the last deglaciation in Antarctica and the atmospheric CO2 increase with respect to the Younger Dryas event. Geophys. Res. Let. 24, 2683–2686.

    Article  ADS  Google Scholar 

  5. Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T. F., Raynaud, D., Jouzel, J., Clausen, H. B., Hammer, C. U. and Johnsen, S. J. 1998. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739–743.

    Article  ADS  Google Scholar 

  6. Blunier, T., Schwander, J., Stauffer, B., Stocker, T., Dällenbach, A., Indermühle, A., Tschumi, J., Chappellaz, J., Raynaud, D. and Barnola, J.-M. 1997. Timing of temperature variations during the last deglaciation in Antarctica and the atmospheric CO2 increase with respect to the Younger Dryas event. Geophys. Res. Let. 24, 2683–2686.

    Article  ADS  Google Scholar 

  7. Bond, G. C. and Lotti, R. 1995. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267, 1005–1010.

    Article  ADS  Google Scholar 

  8. Böning, C., Bryan, F. O., Holland, W. R. and Döscher, R. 1996. Deep-water formation and meridional overturning in a high-resolution model of the North Atlantic. J. Phys. Oceanogr. 26, 1142–1164.

    Article  ADS  Google Scholar 

  9. Broecker, W. S. 1987. The biggest chill. Natural Hist. 96, 74–82.

    Google Scholar 

  10. Broecker, W. S. 1991. The great ocean conveyor. Oceanography 4, 79–89.

    Article  Google Scholar 

  11. Broecker, W. S. 1998. Paleocean circulation during the last d°glaciation: a bipolar seesaw? Paleoceanogr. 13, 119–121.

    Article  ADS  Google Scholar 

  12. Broecker, W. S., Peteet, D. M. and Rind, D. 1985. Does the ocean-atmosphere system have more than one stable mode of operation? Nature 315, 21–25.

    Article  ADS  Google Scholar 

  13. Bryan, F. 1986. High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323, 301–304.

    Article  ADS  Google Scholar 

  14. Budyko, M. I. 1969. The effect of solar radiation variations on the climate of the earth. Tellus 21, 611–619.

    Article  ADS  Google Scholar 

  15. Cane, M. A. 1998. A role for the tropics. Science 282, 59–61.

    Article  Google Scholar 

  16. Chappellaz, Blunier, J. T., Raynaud, D., Barnola, J. M., Schwander, J. and Stauffer, B. 1993. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366, 443–445.

    Article  ADS  Google Scholar 

  17. Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P. and Pachur, H. 1999. Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys. Res. Let. 26, 2037–2040.

    Article  ADS  Google Scholar 

  18. Clement, A., Seager, R., and Cane, M. 1999. Orbital controls on the El Nino/Southern Oscillation and the tropical climate. Paleoceanogr. 14, 441–455.

    Article  ADS  Google Scholar 

  19. Crowley, T. J. 1992. North Atlantic deep water cools the southern hemisphere. Paleoceanogr. 7, 489–497.

    Article  ADS  Google Scholar 

  20. Crowley, T. J. and Baum, S. K. 1997. Effect of vegetation on an ice-age climate model simulation. J. Geophys. Res. 102, 16463–16480.

    Article  ADS  Google Scholar 

  21. Crowley, T. J. and North, G. R. 1991. Paleodimatology. Number 18 in Oxford Monographs on Geology and Geophysics. Oxford University Press. 339 pp.

    Google Scholar 

  22. Dällenbach, A., Blunier, T., Flückiger, J., Stauffer, B., Chappellaz, J. and Raynaud, D. 2000. Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and the transition to the Holocene. Geophys. Res. Let. 27, 1005–1008.

    Article  ADS  Google Scholar 

  23. Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjornsdottir, A. E., Jouzel, J. and Bond, G. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220.

    Article  ADS  Google Scholar 

  24. de Ruijter, W. P. M., Biastoch, A., Drijfhout, S. S., Lutjeharms, J. R. E., Matano, R. P., Pichevin, T., van Leeuwen, P. J. and Weijer, W. 1998. Indian-Atlantic interoceaqn exchange: Dynamics, estimation and impact. J. Geophys. Res. 104, 20885–20910.

    Article  Google Scholar 

  25. Dixon, K. W., Delworth, T. L., Spelman, M. J., and Stouffer, R. J. 1999. The influence of transient surface fluxes on North Atlantic overturning in a coupled GCM climate change experiment. Geophys. Res. Let. 26, 2749–2752.

    Article  ADS  Google Scholar 

  26. Fedorov, A. V. and Philander, S. G. 2000. Is El Niño changing? Science 288, 1997–2002.

    Article  ADS  Google Scholar 

  27. Galleé, H., Van Ypersele, J. P., Fichefet, T., Tricot, C. and Berger, A. 1991. Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model. 1. the climate model. J. Geophys. Res. 96, 13139–13161.

    Article  ADS  Google Scholar 

  28. Ganopolski, A., Rahmstorf, S., Petoukhov, V. and Claussen, M. 1998. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391, 351–356.

    Article  ADS  Google Scholar 

  29. Gill, A. E. 1982. Atmosphere-Ocean Dynamics, Volume 30 of Int. Geophys. Ser. Academic, San Diego, Calif. 662 pp.

    Google Scholar 

  30. Gordon, A. L. 1986. Interocean exchange of thermocline water. J. Geophys. Res. 91, 5037–5046.

    Article  ADS  Google Scholar 

  31. Hall, M. M. and Bryden, H. L. 1982. Direct estimates and mechanisms of ocean heat transport. Deep Sea Res. 29, 339–359.

    Article  Google Scholar 

  32. Heinrich, H. 1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 29, 142–152.

    Article  Google Scholar 

  33. Indermühle, A., Monnin, E., Stauffer, B., Stocker, T. F. and Wahlen, M. 2000. Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophys. Res. Let. 27, 735–738.

    Article  ADS  Google Scholar 

  34. IPCC 1996. Climate Change 1995, The Science of Climate Change. Intergovernmental Panel on Climate Change, Cambridge University Press. 572 pp.

    Google Scholar 

  35. IPCC 2001. Third Assessment Report of Climate Change. Intergovernmental Panel on Climate Change, Cambridge University Press (in press).

    Google Scholar 

  36. Joos, F., Plattner, G.-K., Stocker, T. F., Marchai, O. and Schmittner, A. 1999. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284, 464–467.

    Article  ADS  Google Scholar 

  37. Knutti, R. and Stocker, T. F. 2000. Influence of the thermohaline circulation on projected sea level rise. J. Clim. 13, 1997–2001.

    Article  ADS  Google Scholar 

  38. Knutti, R., Stocker, T. F. and Wright, D. G. 2000. The effects of sub-grid-scale parameterizations in a zonally averaged ocean model. J. Phys. Oceanogr. 30, 2738–2752.

    Article  ADS  Google Scholar 

  39. Lang, C., Leuenberger, M., Schwander, J. and Johnsen, S. 1999. 16°C rapid temperature variation in Central Greenland 70,000 years ago. Science 286, 934–937.

    Google Scholar 

  40. Leuenberger, M., Lang, C. and Schwander, J. 1999. δ 15N measurements as a calibration tool for the paleothermometer and gas-ice age differences. A case study for the 8200 B.P. event on GRIP ice. J. Geophys. Res. 104, 22163–22170.

    Article  ADS  Google Scholar 

  41. Liu, Z., Kutzbach, J. and Wu, L. 2000. Modeling climate shift of El Nino variability in the Holocene. Geophys. Res. Let. 27, 2269–2272.

    Article  ADS  Google Scholar 

  42. MacAyeal, D. R. 1993. A low-order model of the Heinrich event cycle. Paleoceanogr. 8, 767–773.

    Article  ADS  Google Scholar 

  43. Macdonald, A. M. and Wunsch, C. 1996. An estimate of global ocean circulation and heat fluxes. Nature 382, 436–439.

    Article  ADS  Google Scholar 

  44. Maier-Reimer, E., Mikolajewicz, U. and Winguth, A. 1996. Future ocean uptake of CO2: interaction between ocean circulation and biology. Clim. Dyn. 12, 711–721.

    Article  Google Scholar 

  45. Manabe, S. and Stouffer, R. J. 1988. Two stable equilibria of a coupled ocean-atmosphere model. J. Clim. 1, 841–866.

    Article  ADS  Google Scholar 

  46. Manabe, S. and Stouffer, R. J. 1993. Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system. Nature 364, 215–218.

    Article  ADS  Google Scholar 

  47. Manabe, S. and Stouffer, R. J. 1997. Coupled ocean-atmosphere model response to freshwater input: comparison to Younger Dryas event. Paleoceanogr. 12, 321–336.

    Article  ADS  Google Scholar 

  48. Marchai, O., François, R., Stocker, T. F. and Joos, F. 2000. Ocean thermohaline circulation and sedimentary 231Pa/230Th ratio. Paleoceanogr. 15, 625–641.

    Article  ADS  Google Scholar 

  49. Marchai, O., Stocker, T. F. and Joos, F. 1998. Impact of oceanic reorganizations on the ocean carbon cycle and atmospheric carbon dioxide content. Paleoceanogr. 13, 225–244.

    Article  ADS  Google Scholar 

  50. Marchai, O., Stocker, T. F., Joos, F., Indermühle, A., Blunier, T. and Tschumi, J. 1999. Modelling the concentration of atmospheric CO2 during the Younger Dryas climate event. Clim. Dyn. 15, 341–354.

    Article  Google Scholar 

  51. Marotzke, J. 1990. Instabilities and Multiple Equilibria of the Thermohaline Circulation. Ph. D. thesis, Christian-Albrechts-Universität Kiel. 126 pp.

    Google Scholar 

  52. Marotzke, J., Welander, P., and Willebrand, J. 1988. Instability and multiple equilibria in a meridional-plane model of the thermohaline circulation. Tellus 40A, 162–172.

    Article  ADS  Google Scholar 

  53. Marshall, J. and Schott, F. 1999. Open-ocean convection: observations, theory and models. Rev. Geophys. 37, 1–64.

    Article  ADS  Google Scholar 

  54. Mikolajewicz, U. and Maier-Reimer, E. 1994. Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model’s conveyor belt. J. Geophys. Res. 99, 22633–22644.

    Article  ADS  Google Scholar 

  55. Mikolajewicz, U. and Voss, R. 2000. The role of the individual air-sea flux components in C02-induced changes of the ocean’s circulation and climate. Clim. Dyn. 16, 627–642.

    Article  Google Scholar 

  56. North, G. R., Cahalan, R. F. and Coakley, J. A. 1981. Energy balance climate models. Rev. Geophys. Space Phys. 19, 91–121.

    Article  ADS  Google Scholar 

  57. Pedlosky, J. 1996. Ocean Circulation Theory. Springer. 453 pp.

    Book  Google Scholar 

  58. Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C., and Rahmstorf, S. 2000. CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Clim. Dyn. 16, 1–17.

    Article  Google Scholar 

  59. Quon, C. and Ghil, M. 1994. Multiple equilibria and stable oscillations in ther-mosolutal convection at small aspect ratio. J. Fluid Mech. 291, 35–56.

    MathSciNet  Google Scholar 

  60. Rahmstorf, S. 1995. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149.

    Article  ADS  Google Scholar 

  61. Rooth, C. 1982. Hydrology and ocean circulation. Prog. Oceanogr. 11, 131–149.

    Article  ADS  Google Scholar 

  62. Sachs, J. P. and Lehman, S. J. 1999. Subtropical North Atlantic temperatures 60,000 to 30,000 years ago. Science 286, 756–759.

    Article  Google Scholar 

  63. Saravanan, R. and McWilliams, J. C. 1995. Multiple equilibria, natural variability, and climate transitions in an idealized ocean-atmosphere model. J. Clim. 8, 2296–2323.

    Article  ADS  Google Scholar 

  64. Sarmiento, J. L. and Le Quéré, C. 1996. Oceanic carbon dioxide in a model of century-scale global warming. Science 274, 1346–1350.

    Article  ADS  Google Scholar 

  65. Schiller, A., Mikolajewicz, U. and Voss, R. 1997. The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Clim. Dyn. 13, 325–347.

    Article  Google Scholar 

  66. Schmittner, A., Appenzeller, C. and Stocker, T. F. 2000. Enhanced Atlantic freshwater export during El Niño. Geophys. Res. Let. 27, 1163–1166.

    Article  ADS  Google Scholar 

  67. Schmittner, A. and Stocker, T. F. 1999. The stability of the thermohaline circulation in global warming experiments. J. Clim. 12, 1117–1133.

    Article  ADS  Google Scholar 

  68. Schmittner, A. and Stocker, T. F. 2001. A seasonally forced ocean-atmosphere model for paleoclimate studies. J. Clim. (in press).

    Google Scholar 

  69. Schmitz, W. J. 1995. On the interbasin-scale thermohaline circulation. Rev. Geophys. 33, 151–173.

    Article  ADS  Google Scholar 

  70. Sellers, W. D. 1969. A global climate model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol. 8, 392–400.

    Article  ADS  Google Scholar 

  71. Stauffer, B., Blunier, T., Dällenbach, A., Indermühle, A., Schwander, J., Stocker, T. F., Tschumi, J., Chappellaz, J., Raynaud, D., Hammer, C. U. and Clausen, H. B. 1998. Atmospheric CO2 and millennial-scale climate change during the last glacial period. Nature 392, 59–62.

    Article  ADS  Google Scholar 

  72. Stocker, T. F. 1998. The seesaw effect. Science 282, 61–62.

    Article  Google Scholar 

  73. Stocker, T. F. 1999. Climate changes: from the past to the future — a review. Int. J. Earth Sci. 88, 365–374.

    Article  Google Scholar 

  74. Stocker, T. F. 2000. Past and future reorganisations in the climate system. Quat. Sci. Rev. 19, 301–319.

    Article  ADS  Google Scholar 

  75. Stocker, T. F. and Marchai, O. 2000. Abrupt climate change in the computer: is it real? Proc. US Natl. Acad. Sci. 97, 1362–1365.

    Article  ADS  Google Scholar 

  76. Stocker, T. F. and Schmittner, A. 1997. Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388, 862–865.

    Article  ADS  Google Scholar 

  77. Stocker, T. F. and Wright, D. G. 1991a. Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature 351, 729–732.

    Article  ADS  Google Scholar 

  78. Stocker, T. F. and Wright, D. G. 1991b. A zonally averaged model for the thermohaline circulation. Part II: Interocean exchanges in the Pacific-Atlantic basin system. J. Phys. Oceanogr. 21, 1725–1739.

    Article  ADS  Google Scholar 

  79. Stocker, T. F. and Wright, D. G. 1996. Rapid changes in ocean circulation and atmospheric radiocarbon. Paleoceanogr. 11, 773–796.

    Article  ADS  Google Scholar 

  80. Stocker, T. F., Wright, D. G. and Broecker, W. S. 1992a. The influence of high-latitude surface forcing on the global thermohaline circulation. Paleoceanogr. 7, 529–541.

    Article  ADS  Google Scholar 

  81. Stocker, T. F., Wright, D. G. and Mysak, L. A. 1992b. A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies. J. Clim. 5, 773–797.

    Article  ADS  Google Scholar 

  82. Stommel, H. 1948. The westward intensification of wind-driven ocean currents. Trans. Am. Geophys. Union 29, 202–206.

    Article  ADS  Google Scholar 

  83. Stommel, H. 1958. The abyssal circulation. Deep Sea Res. 5, 80–82.

    Article  Google Scholar 

  84. Stommel, H. 1961. Thermohaline convection with two stable regimes of flow. Tel-lus 13, 224–241.

    Article  ADS  Google Scholar 

  85. Stommel, H. and Arons, A. B. 1960. On the abyssal circulation of the world ocean — I. Stationary planetary flow patterns on a sphere. Deep Sea Res. 6, 140–154.

    Google Scholar 

  86. Stouffer, R. J. and Manabe, S. 1999. Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide: sensitivity to the rate of increase. J. Clim. 12, 2224–2237.

    Article  ADS  Google Scholar 

  87. Trenberth, K. E. and Solomon, A. 1994. The global heat balance: heat transports in the atmosphere and ocean. Clim. Dyn. 10, 107–134.

    Article  Google Scholar 

  88. Tziperman, E. 2000. Proximity of the present-day thermohaline circulation to an instability threshold. J. Phys. Oceanogr. 30, 90–104.

    Article  ADS  Google Scholar 

  89. Warren, B. A. 1981. Deep circulation of the world ocean. In B. A. Warren and C. Wunsch (Eds.), Evolution of Physical Oceanography — Scientific Surveys in Honor of Henry Stommel, pp. 6–41. MIT Press.

    Google Scholar 

  90. Wright, D. G. and Stocker, T. F. 1991. A zonally averaged ocean model for the thermohaline circulation, Part I: Model development and flow dynamics. J. Phys. Oceanogr. 21, 1713–1724.

    Article  ADS  Google Scholar 

  91. Wright, D. G. and Stocker, T. F. 1992. Sensitivities of a zonally averaged global ocean circulation model. J. Geophys. Res. 97, 12,

    Google Scholar 

  92. Wright, D. G. and Stocker, T. F. 1992. Sensitivities of a zonally averaged global ocean circulation model. J. Geophys. Res. 97, 707–12,

    Google Scholar 

  93. Wright, D. G. and Stocker, T. F. 1992. Sensitivities of a zonally averaged global ocean circulation model. J. Geophys. Res. 97, 730.

    Google Scholar 

  94. Wright, D. G., Stocker, T. F. and Mercer, D. 1998. Closures used in zonally averaged ocean models. J. Phys. Oceanogr. 28, 791–804.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stocker, T.F. (2001). The Role of Simple Models in Understanding Climate Change. In: Straughan, B., Greve, R., Ehrentraut, H., Wang, Y. (eds) Continuum Mechanics and Applications in Geophysics and the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04439-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04439-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07500-1

  • Online ISBN: 978-3-662-04439-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics