Skip to main content

Analysis of Convergence and Smoothness by the Formalism of Laurent Polynomials

  • Chapter
Tutorials on Multiresolution in Geometric Modelling

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

In order to design “good” subdivision schemes, tools for analyzing the convergence and smoothness of a scheme, given its mask, are needed.

A Laurent polynomial, encompassing all the available information on a subdivision scheme to be analysed, (a finite set of real numbers), is the basis of the analysis. By simple algebraic operations on such a polynomial, sufficient conditions for convergence of the subdivision scheme, and for the smoothness of the limit curves/surfaces generated by the subdivision scheme, can be checked rather automatically. The chapter concentrates on univariate subdivision schemes, (schemes for curve design) because of the simplicity of this case, and only hints on possible extensions to the bivariate case (schemes for surface design). The analysis is then demonstrated on schemes from the first two chapters of this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. S. Cavaretta, W. Dahmen, and C. A. Micchelli. Stationary subdivision. Memoirs of AMS 93, 1991.

    Google Scholar 

  2. I. Daubechies, I. Guskov, and W. Sweldens. Regularity of irregular subdivision. Constr. Approx. 15, 1999, 381–426.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Dyn. Subdivision schemes in Computer-Aided Geometric Design. Advances in Numerical Analysis, Vol II, Wavelets, Subdivision Algorithms and Radial Basis Functions, W. Light (ed.), Clarendon Press, Oxford, 1992, 36–104.

    Google Scholar 

  4. N. Dyn, J. A. Gregory, and D. Levin. A four-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Design 4, 1987, 257–268.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Dyn, J. A. Gregory, and D. Levin. Analysis of linear binary subdivision schemes for curve design. Constr. Approx. 7, 1991, 127–147.

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Dyn and D. Levin. Analysis of asymptotically equivalent binary subdivision schemes. J. Math. Anal. Appl. 193, 1995, 594–621.

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Dyn and D. Levin. Subdivision schemes in geometric modeling. To appear in Acta Numerica, 2002.

    Google Scholar 

  8. N. Dyn, D. Levin, and A. Luzzatto. Non-stationary interpolatory subdivision schemes reproducing spaces of exponential polynomials. Preprint.

    Google Scholar 

  9. N. Dyn, D. Levin, and C. A. Micchelli. Using parameters to increase smoothness of curves and surfaces generated by subdivision. Comput. Aided Geom. Design 7, 1990, 129–140.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Dyn. Interpolatory subdivision schemes. This volume.

    Google Scholar 

  11. J. A. Gregory. An introduction to bivariate uniform subdivision. Numerical Analysis 1991, D. F. Griffiths and G. A. Watson (eds.), Pitman Research Notes in Mathematics, Longman Scientific and Technical, 1991, 103–117.

    Google Scholar 

  12. A. Luzzatto. Multi-Scale Signal Processing, Based on Non-Stationary Subdivision. PhD Thesis, Tel-Aviv University, 2000.

    Google Scholar 

  13. C.A. Micchelli and H. Prautzsch. Uniform refinement of curves. Linear Algebra Appl. 114/115, 1989, 841–870.

    Article  MathSciNet  Google Scholar 

  14. M. Sabin. Subdivision of box-splines. This volume.

    Google Scholar 

  15. M. Sabin. Eigenanalysis and artifacts of subdivision curves and surfaces. This volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dyn, N. (2002). Analysis of Convergence and Smoothness by the Formalism of Laurent Polynomials. In: Iske, A., Quak, E., Floater, M.S. (eds) Tutorials on Multiresolution in Geometric Modelling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04388-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04388-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07819-4

  • Online ISBN: 978-3-662-04388-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics