Skip to main content

Systematic Cathodoluminescence Spectral Analysis of Synthetic Doped Minerals: Anhydrite, Apatite, Calcite, Fluorite, Scheelite and Zircon

  • Chapter
Cathodoluminescence in Geosciences

Abstract

As the geochemical behavior of the rare earth elements (REE) is of increasing interest in geology (see the reviews edited by Lipin and McKay 1989 and Jones et al. 1996), the main REE minerals in most igneous, metamorphic and sedimentary rocks are now being studied in detail. REE are major or trace constituents in many minerals (Burt 1989). Besides the specific REE mineral assemblages which occur in alkaline, peralkaline and carbonatitic rocks (Vlassov 1966; Burt 1989; Mariano 1989; Larsen 1996; Taylor and Pollard 1996; Wall and Mariano 1996; Khomyakov 1996), more common accessory minerals such as zircon, apatite, anhydrite, carbonates and fluorites are also REE carriers and play an important role in petrologic processes. The major application of the REE studies is the melt mineral partition coefficient, used to model igneous petrogenetic processes. This will depend on the compatibility of the REE in major minerals occurring in late differentiated stages such as apatite and zircon (McKay 1989). Most of the REE are well known to be luminescence activators (Pringsheim 1949; Levrenz 1950; Monod-Herzen 1966; Diecke 1968; Marfunin 1979; Marshall 1988, Waychunas 1988). In order to interpret the cathodoluminescence (CL) emissions of natural REE bearing minerals, it is essential to compare their CL spectra to those of synthetic minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argiolas R, Baumer A (1978) Synthèse de chlorapatite par synthèse hydrothermale: étude de l’influence de la sursaturation sur l’évolution des faciès des cristaux. Canad Mineral 16, 285–290

    Google Scholar 

  • Banerjee HD, Ratnam VV (1973) Trapped holes and trapped-hole diffusion in CaF2 crystals irradiated by cathode rays. Physica 65, 97–108

    Article  Google Scholar 

  • Barbin V, Jouart JP, D’Almeida T (1996) Cathodoluminescence and laser-excited luminescence spectroscopy of Eu3+ and Eue+ in synthetic CaF2: a comparative study. Chem Geol 130, 77–86

    Article  Google Scholar 

  • Baumer A, Blanc Ph, Cesbron F, Ohnenstetter D (1997) Cathodoluminescence of synthetic (doped with rare-earth elements) and natural anhydrites. Chem Geol 138: 73–80

    Article  Google Scholar 

  • Blanc Ph, Arbey F, Cros P, Cesbron F, Ohnenstetter D (1994a) Applications de la microscopie électronique à balayage et de la cathodoluminescence à des matériaux géologiques (sulfates, carbonates, silicates). Bull. Soc. géol. Fr. 165: 341–352

    Google Scholar 

  • Blanc Ph, Baumer A, Cesbron F, Ohnenstetter D (1995) Les activateurs de cathodoluminescence dans des chlorapatites préparées par synthèse hydrothermale. C R Acad Sci Paris, sér II 321: 1119–1126

    Google Scholar 

  • Blanc Ph, Roger G, Couto H (1994b) Recherche de signatures magmatique et hydrothermale dans des apatites du Nord du Portugal: étude par cathodoluminescence, microscopie électronique à balayage et microsonde électronique. Bull Soc géol Fr 165: 329–339

    Google Scholar 

  • Blase G, Bril A (1967) Investigation of some Ce3+- activated phospors. J Chem Phys 47, 5139–5145

    Article  Google Scholar 

  • Blase G (1973) Crystal chemistry and rare-earth luminescence of mixed metal oxides. Rev Chimie minér 10, 39–46

    Google Scholar 

  • Burrus RC, Ging TG, Eppinger RG, Samson IM (1992) Laser-excited fluorescence of rare earth elements in fluorite: Initial observations with a laser Raman microprobe. Geochim Cosmochim Acta 56, 2713–2723

    Google Scholar 

  • Burt DM (1989) Compositional and phase relations among rare earth element minerals. In: Lipin BR, McKay GA (eds.) Geochemistry and Mineralogy of rare earth elements. Mineral Soc Amer, Rev Mineral 21, pp 259–307

    Google Scholar 

  • Calderon T, Aguilar M, Coy-Yill R (1983) Relationship between blue color and radiation damage in calcite. Radiation Effects Lett 76, 187–191

    Article  Google Scholar 

  • Calderon T, Aguilar M, Jaque F, Coy-Yill R (1984) Thermoluminescence from natural calcites. J Phys C/ Solid State Phys 17, 2027–2038

    Article  Google Scholar 

  • Caruba R, Iacconi P, Cottrant JF, Calas G (1983) Thermoluminescence, fluorescence and electron paramagnetic resonance properties of synthetic hydrothermal scheelites. Phys Chem Minerals 9, 223–228

    Article  Google Scholar 

  • Cesbron F, Blanc Ph, Ohnenstetter D, Rémond G (1995) Cathodoluminescence of rare earth doped zircons. Part I: their possible use as reference materials. Scanning Microscopy, suppl. 9: 35–56

    Google Scholar 

  • Cesbron F, Ohnenstetter D, Blanc Ph, Rouer O, Sichere MC (1993) Incorporation des terres rares dans des zircons de synthèse: étude par cathodoluminescence. C R Acad Sci Paris, sér II 316: 1231–1238

    Google Scholar 

  • Curie D (1960) Luminescence cristalline. Dunod, Paris, pp 209

    Google Scholar 

  • Darmarajan R, Belt RF, Puttbach RC (1972) Hydrothermal and flux growth of zircon crystals. J Crystal Growth 13 /14: 535–539

    Article  Google Scholar 

  • Diaz MA, Luff BJ, Townsend PD, Wirth KR (1991) Temperature dependence of luminescence from zircon, calcite, iceland spar and apatite. Nucl Tracks Radiat. Meas 18: 45–51

    Google Scholar 

  • Dieke GH (1968) Spectra and energy levels of rare earth ions in crystals. John Wiley, New York, pp 401

    Google Scholar 

  • Gaft ML, Bershov LV, Krasnaya AR, Yaskolko VY (1985) Luminescence centers in anhydrite, barite, celestine and their synthetized analogs. Phys Chem Minerals 11, 255–260

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G, Boulon G, Shoval S, Champagnon B (1997a) Reabsorption lines of molecular oxygen and water in natural apatite. Optical Materials 8: 149–157

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G, Shoval S, Champagnon B, Boulon, G (1997b) Eu3+ luminescence in high-symmetry sites of natural apatite. J Lumin 72–74: 572–574

    Article  Google Scholar 

  • Gorobets BS, Walker G (1995) Origins of luminescence in minerals: a summary of fundamental studies and applications. In: Marfunin AS (ed.) Advanced Mineralogy. Springer Verlag, Berlin, 2, pp 124–135

    Google Scholar 

  • Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complexes crustal histories. Chem Geol 110: 1–13

    Article  Google Scholar 

  • Hanchar JM, Marshall DJ (1995) Multi-laboratory results for the cathodoluminescence emission spectrum from a synthetic zircon standard. Scanning Microscopy, suppl. 9:

    Google Scholar 

  • Hanchar JM, Rudnik RL (1995) Revealing hidden structures: The application of cathodoluminescence and backscattered electron imaging to dating zircons from lower crustal xenoliths. Lithos 36: 289–303

    Article  Google Scholar 

  • Hanchar JM, Watson EB, Cherniak DJ, Finch RJ, Mariano AN (1997) Rare-earth elements in zircons: synthesis and rare-element doping. Amer Mineral (submitted)

    Google Scholar 

  • Henry DJ, Toney JB (1987) Combined cathodoluminescence/backscattered electron imaging and trace element analysis with the electron microprobe: applications to geological materials. In: Geiss R.H. (ed.) Microbeam Analysis: pp. 339–342

    Google Scholar 

  • Iacconi P, Caruba R (1980) Trapping and emission centres in X-irradiated natural zircon. III. Influence of trivalent rare earth impurities. phys stat sol (a) 62, 589–596

    Google Scholar 

  • Iliev M, Sendova-Vassileva M (1995) Selective laser excitated of rare-earth luminescence spectra. In: Marfunin AS (ed.) Advanced Mineralogy. Springer Verlag, Berlin, 2, pp 136–138

    Google Scholar 

  • Imbusch MD (1978) Inorganic luminescence. In: Lumb MD (ed.) Luminescence Sectroscopy. Academic Press, London, pp 1–92

    Google Scholar 

  • Jain VK (1978) Thermoluminescence glow curves and spectrum of zircon (sand). Bull Minéral 101, 358–362

    Google Scholar 

  • Jones AP, Wall F, Williams CT (1996) Rare Earths Minerals: Chemistry, origin and ore deposits. Chapman & Hall, London, Mineral Soc Ser 7, pp 372

    Google Scholar 

  • Kempe von U, Trinkler M, Wolf D (1991) Yttrium und die Seltenerdfotolumineszenz natürlicher Scheelite. Chem Erde 51, 275–289

    Google Scholar 

  • Kirsk Y, Townsend PD (1987) Electron and hole centers produced in zircon by X-irradiation at room temperature. J Phys C: Solid State Phys 20, 967–980

    Google Scholar 

  • Kiessling J, Scharmann A (1975) Thermally stimulated effects of rare-earth doped CaF2. phys stat sol (a) 32, 459–466

    Google Scholar 

  • KhomyakovAP (1995) Mineralogy of Hyperagpaitic alkaline Rocks. Clarendon Press, Oxford, pp 223

    Google Scholar 

  • Koberski U, Keller J (1995) Cathodoluminescence observations of natrocarbonatites and related peralkaline nephelinites at Oldoinyo Lengai. In: Bell K, Keller J (eds.) Carbonatite Volcanism. Oldoinyo Lengai and the petrogenesis of natrocarbonatites. Springer Verlag, Berlin, pp. 87–99

    Chapter  Google Scholar 

  • Kolbe WF, Smakula S (1961) Anisotropy of color centers in calcite. Phys Rev 124, 1754–1757

    Article  Google Scholar 

  • Lapraz D, Baumer A (1981) Chloroapatite, Cas(PO4)3C1: Thermoluminescent properties. Phys stat sol (a) 68, 309–319

    Google Scholar 

  • Lapraz D, Baumer A (1983) Thermoluminescent properties of synthetic and natural fluoroapatite, Cas(PO4)3F. phys stat sol (a) 80, 353–366

    Article  Google Scholar 

  • Lapraz D, Iacconi P (1976) On some luminescent and optical properties of synthetic calcite single crystals: phys stat sol (a) 36, 603–616

    Article  Google Scholar 

  • Larsen AO (1996) Rare earth minerals from the syenite pegmatites in the Oslo region, Norway. In: Jones AP, Wall F, Williams CT (eds) Rare Earths Minerals: Chemistry, origin and ore deposits. Chapman & Hall, London, Mineral Soc Ser 7, pp 151–166

    Google Scholar 

  • Levrenz HW (1950) An introduction to luminescence of solids. John Willey, New York, pp 559

    Google Scholar 

  • Lipin BR, McKay GA (1989) Geochemistry and Mineralogy of rare earth elements. Mineral Soc Amer, Rev Mineral 21, pp 348

    Google Scholar 

  • Long JVO, Agrell O (1965) The cathodo-luminescence of minerals in thin section. Mineral Mag 34: 318–326

    Article  Google Scholar 

  • Machel HG, Mason RA, Mariano AN, Mucci A (1991) Causes and emission of luminescence in calcite and dolomite. In: Baker CE, Kopp OC (eds.) Luminescence microscopy and spectroscopy: qualitative and quantitative applications. Soc. Sedim. Geol., Short course, Dallas, 25, pp 9–25

    Google Scholar 

  • Mariano AN (1978) The application of cathodoluminescence for carbonatite exploration and char- acterization. Proc 1st Inter Symp Carbonatites Juhno 1976, Poços de Caldas, Brasil, pp 39–57

    Google Scholar 

  • Mariano AN (1988) Some further geological application of cathodoluminescence. In: Marshall DJ (ed.) Cathodoluminescence of geological Materials. Unwin Hyman, Boston, pp 94–123

    Google Scholar 

  • Mariano AN (1989) Cathodoluminescence emission spectra of rare earth element activators in minerals. In: Lipin BR, McKay GA (eds.) Geochemistry and Mineralogy of rare earth elements. Mineral Soc Amer, Rev Mineral 21, pp 339–348

    Google Scholar 

  • Mariano AN, Ring PJ (1975) Europium activated cathodoluminescence in minerals. Geoch Cosmochim Acta 39, 649–660

    Article  Google Scholar 

  • Mariano AN, Roeder PL (1989) Wöhlerite: chemical composition, cathodoluminescence and environment of crystallization. Can Mineral 27, 709–720

    Google Scholar 

  • Marfunin AS (1979) Spectroscopy, luminescence and radiation centers in minerals. Springer-Verlag, Berlin, pp 352

    Book  Google Scholar 

  • Marshall DJ (1988) Cathodoluminescence of geological Materials. Unwin Hyman, Boston, pp 146

    Google Scholar 

  • Mason RA, Mariano AN (1990) Cathodoluminescence activation in manganese bearing and rare earth bearing synthetic calcites. Chem Geol 88 191–208

    Article  Google Scholar 

  • McKay GA (1989) Partitioning of rare earth elements between major silicate minerals and basaltic melts. In: Lipin BR, McKay GA (eds.) Geochemistry and Mineralogy of rare earth elements. Mineral Soc Amer, Rev Mineral 21, pp 45–77

    Google Scholar 

  • Medlin WL (1964) Trapping centers in thermoluminescent calcite. Phys Rev 135, A1770 - A1779

    Article  Google Scholar 

  • Medlin WL (1967) Color center growth curves in calcite. J Phys Chem Solids 28, 1725–17333

    Article  Google Scholar 

  • Merz JL, Pershan PS (1967) Charge conversion of irradiated rare-earth ions in calcium fluoride. Physic Review 162, 217–247

    Article  Google Scholar 

  • Mitchell RH, Xiong J, Mariano AN, Fleet ME (1997) Rare-earth-activated cathodoluminescence in apatite. Can Mineral 35, 979–998

    Google Scholar 

  • Monod-Herzen G (1966) Luminescence. Dunod, Paris, pp 278

    Google Scholar 

  • Morozov AM, Morozova LG, Trefimov AK, Feofilov PP (1970) Spectral and luminescent characteristics of fluoroapatite single crystals activated by rare earth ions. Optika i spektroskopia 29, 590–596

    Google Scholar 

  • Nakagawa M, Fukunaga K, Okada M, Atobe K (1988) Lattice defects in thermoluminescent calcite. J Lumin 40&41, 345–346

    Google Scholar 

  • Nambi KSV, Bapat VN, Ganguly AK (1974) Thermoluminescence of CaSO4 doped with rare earths. J Phys C: Solid State Phys 7, 4403–4415

    Article  Google Scholar 

  • Ohnenstetter D, Cesbron F, Rémond G, Caruba R, Claude JM (1991) Emissions de cathodoluminescence de deux populations de zircons naturel: tentative d’interpretation. C R Acad Sci Paris 313, 641–647

    Google Scholar 

  • Pringsheim P (1949) Fluorescence and phosphoresence. Wiley, New York, pp 479

    Google Scholar 

  • Rémond G (1977) Applications of cathodoluminescence in mineralogy. J Lumin 15: 121–155

    Article  Google Scholar 

  • Rémond G, Blanc Ph, Cesbron F, Ohnenstetter D, Rouer O (1995) Cathodoluminescence of rare earth doped zircons. Part II: relationship between the distribution of the doping elements and the contrasts of CL images. Scanning Microscopy, suppl. 9: 57–76

    Google Scholar 

  • Rémond G, Cesbron F, Chapoulie R, Ohnenstetter D, Roques-Carmes C, Schvoerer M (1992) Cathodoluminescence applied to the microcharacterization of mineral materials: a present status in experimentation and interpretation. Scanning Microscopy 6: 23–68

    Google Scholar 

  • Rémond G, Phillips M, Roques-Carmes C Importance of instrumental and experimental factors on the interpretation of CL data from wide band gap materials. (this Vol.)

    Google Scholar 

  • ReisfeldR, Gaft M, Boulon G, Panczer G, Jorgensen CK (1996) Laser-induced luminescence of rare-earth elements in natural fluor-apatites. J Lumin 69: 343–353

    Google Scholar 

  • Roeder PL, Mac Arthur D, Ma XP, Palmer GL, Mariano AN (1987) Cathodoluminescence and microprobe study of rare-earth elements in apatite. Amer Mineral 72: 801–811

    Google Scholar 

  • Sippel RF, Glover ED (1965) Structures in carbonate rocks made visible by luminescence petrography. Science 167: 677–679

    Article  Google Scholar 

  • Smith JV, Stenstrom RC (1965) Electron-excited luminescence as a petrologic tool. J Geol 73: 627–655

    Article  Google Scholar 

  • Tanabe S, Suzuki K, Soga N, Hanada T (1995) Mechanics and concentration dependence of Tm3+ blue and Era+ green up-conversion in codoped glasses by red-laser pumping. J Lumin 65, 247–255

    Article  Google Scholar 

  • Tarashchan AN (1978) Luminescence of minerals. Nauk Dumka, Kiev, pp 296 (in russian)

    Google Scholar 

  • Tarashchan A, Waychunas G (1995) Interpretation of luminescence spectra in terms of band theory and crystal fiel theory. In: Marfunin AS (ed.) Advanced Mineralogy. Springer Verlag, Berlin, 2, pp 124–135

    Google Scholar 

  • Taylor RP, Pollard PJ (1996) Rare earth element mineralization in peralkaline systems: the T-zone REE-Y-Be deposit, Thor Lake, Northwest Territories, Canada.In: Jones AP, Wall F, Williams, CT (eds) Rare Earths Minerals: Chemistry, origin and ore deposits. Chapman & Hall, London, Mineral Soc Ser 7, pp 167–192

    Google Scholar 

  • Tyson RM, Hemphill WR, Theisen AF (1988) Effect of the W:Mo ratio on the shift of excitationand emission spectra in the scheelite-powellite series. Amer Min 73, 1145–1154

    Google Scholar 

  • Van Uitert LG, Iida S (1962) Quenching interactions between rare-earth ions. J Chem Phys 37, 986–992

    Article  Google Scholar 

  • Visocekas R, Ceva T, Lapraz D, laconni P, Lefaucheux F (1973) Cathode-ray-excited luminescence and thermoluminescence of a synthetic calcite monocrystal. phys stat sol (a) 15, 61–66

    Article  Google Scholar 

  • Vlassov KA (1966) Geochemistry and mineralogy of rare elements and genetic types of their deposits. vol II mineralogy of rare elements. Israel Program of Sci Translations, Jerusalem, pp 916

    Google Scholar 

  • Wall F, Mariano AN (1996) Rare earth minerals in carbnatites: a discussion centred on the Kangankunde carbonatite, Malawi. In: Jones AP, Wall F, Williams, CT (eds) Rare Earths Minerals: Chemistry, origin and ore deposits. Chapman & Hall, London, Mineral Soc Ser 7, pp 193–225

    Google Scholar 

  • Warwick CA (1987) Recent advances in scanning electron microscope cathodoluminescence assessment of GaAs and InP. Scanning Microscopy 1: 51–61

    Google Scholar 

  • Waychunas GA (1988) Luminescence, X-ray emission and new spectroscopies. In: Hawthorn FC (ed.) Spectroscopic methods in mineralogy and geology. Mineral Soc Amer, Rev Mineral 18, pp 639–698

    Google Scholar 

  • Wybourne BG (1965) Spectroscopic properties of rare earths. Wiley, New York, pp 236

    Google Scholar 

  • Yaccobi BG, Holt DB (1990) Cathodoluminescence microscopy of inorganic solids. Plenum Press, New York, pp 292

    Google Scholar 

  • Yang B, Luff BJ, Townsend PD (1992) Cathodoluminescence of natural zircons. J Phys Condens Matter 4: 5617–5624

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blanc, P., Baumer, A., Cesbron, F., Ohnenstetter, D., Panczer, G., Rémond, G. (2000). Systematic Cathodoluminescence Spectral Analysis of Synthetic Doped Minerals: Anhydrite, Apatite, Calcite, Fluorite, Scheelite and Zircon. In: Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D. (eds) Cathodoluminescence in Geosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04086-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04086-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08526-0

  • Online ISBN: 978-3-662-04086-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics