Skip to main content

Importance of Instrumental and Experimental Factors on the Interpretation of Cathodoluminescence Data from Wide Band Gap Materials

  • Chapter
Cathodoluminescence in Geosciences

Abstract

Electron beam excited optical photons (Ehv=6−0.7 eV) can be detected and used for cathodoluminescence (CL) microscopy and spatially resolved CL spectroscopy by attaching a light collector and monochromator to an electron probemicro-analyser (EPMA) or a scanning electron microscope (SEM). Colour CL images measured using an EPMA were first reported by Long and Agrell (1965) when the EMPA technique was originally applied to mineralogy. In this initial approach the CL emission was excited with a stationary beam and recorded on a colour photographic plate through the eyepiece of the optical microscope attached to the EPMA. Over the past 30 years, there have been significant improvements in CL measurement instrumentation and analysis techniques. High resolution CL spectra as well as CL digital images with submicron spatial resolution are now measured using high sensitivity UV-VIS-NIR photon detectors and a scanned electron probe with a well defined energy, diameter and current. As a result of these developments CL microscopy and microanalysis are now routinely used for the analysis of structural defects and impurities in a wide range of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bastin GF, Heijligers HJM (1991a) Quantitative electron probe microanalysis of ultra-light elements (Boron-Oxygen). In: Heinrich KFJ, Newbury DE (eds) Electron Probe Quantitation. Plenum Press, New York, pp 145–162

    Google Scholar 

  • Bastin GF, Heijligers HJM (1991b) Non conductive specimens in the electron probe microanalyzer. A hitherto poorly discussed problem. In: Heinrich KFJ, Newbury DE (eds) Electron Probe Quantitation. Plenum Press, New York, pp 163–175

    Google Scholar 

  • Blanc Ph, Baumer A, Cesbron F, Ohnenstetter D, Panczer G Rémond G (1999) Systematic cathodoluminescence spectral analysis of synthetic doped minerals: Anhydrite, apatite, calcite, fluorite, scheelite and zircon. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in the Geosciences, Springer-Verlag, Berlin (this Vol.)

    Google Scholar 

  • Bond EF, Haggis GH, Beresford D (1974) Improved cathodoluminescence microscopy. J. Microscopy 100: 271–280

    Article  Google Scholar 

  • Bresse JF, Rémond G, Akamatsu B (1996) Cathodoluminescence microscopy and spectroscopy of semiconductors and wide bandgap insulating materials. Mikrochimica Acta Supp 13: 135–166

    Google Scholar 

  • Buschbech F, Horl EM (1978) Electronic adding-up and storing of SEM color images. Scanning Electron Microscopy I: 835–839

    Google Scholar 

  • Cazaux J, (1986) Electrostatics of insulators charged by incident electron beams. J Microsc Spectrosc Electron11: 293–312

    Google Scholar 

  • Cazaux J (1996) Electron probe microanalysis of insulating materials: Quantification problems and some possible solutions. X-ray Spectrometry 25 (6): 265–280

    Article  Google Scholar 

  • Cazaux J, Le Gressus C (1991) Phenomena relating to charge in insulators: Macroscopic effects and microscopic causes. Scanning Microscopy 5: 17–27

    Google Scholar 

  • Cesbron F, Blanc P, Ohnenstetter D, Rémond G, Rouer (1995) Cathodoluminescence of rare earth doped zircons. I. Their possible use as reference materials. Scanning Microscopy Supp. 9: 35–56

    Google Scholar 

  • Curie D (1963) Luminescence in Crystals (translated by GFJ Gartick) Methuen and Co Ltd, London, England

    Google Scholar 

  • Dicke GH (1968) Spectra and Energy Levels of Rare Earth Ions in Crystals. McGraw Hill, New York Ding ZJ, Shimizu R (1996) A Monte Carlo modeling of electroninteraction with solid including cascade secondary electron production. Scanning (18): 92–113

    Google Scholar 

  • Duncumb P, Reed SJB (1968) The calculation of stopping power and backscatter effect in electron probe microanalysis. In: KFJ Heinrich (ed) Quqntitative electron probe microanalysis. NBS Spec. Publ. 298 pp 133–154.

    Google Scholar 

  • Ehrenberg W, Franks (1953) The penetration of electrons in luminescent materials. J. Proc. Phys. Soc. 66: 1057–1066

    Article  Google Scholar 

  • Ehrenberg W, King DEN (1963) The penetration of electrons in luminescent materials. Proc. Phys. Soc. 81: 751–766

    Article  Google Scholar 

  • Everhart TE, Hoff PH (1971) Determination of kilovolt energy dissipation vs penetration distance in solid materials. J. Appl. Phys. 42 (13): 5837–5846

    Article  Google Scholar 

  • Everhart TE, Herzog RF, Chung MS, Devore WJ (1972) Electron energy dissipation measurements in solids. In: Shinoda G, Kohra K, Ichinokawa T (eds) Proc. 6th International Conference on X-Ray Optics and Microanalysis. University of Tokyo Press, Tokyo, Japan pp 81–88.

    Google Scholar 

  • Fialin M, Rémond G, Bonnelle C (1994) New developments in electron probe microanalysis of oxygen in wide band gap oxides. Microbeam Analysis 3: 211–224

    Google Scholar 

  • Fialin M, Bonnelle G, Rémond G, Blanc P (1995) Contribution of beam induced states to the O Ka peak of alumina: Consequences for electron probe microanalysis. In: Etz ES (ed) Proc. of the 29th Annual Conference of the Microbeam Society, VCH Publishers, New York, 199–2000

    Google Scholar 

  • Fielding PE (1970) The distribution of uranium, rare-earth and color centers in a crystal of a natural zircon. Am. Miner. 55: 428–440

    Google Scholar 

  • Goldstein JI, Newbury DE, Echlin P, Joy DC, Fiori C, Lifshin E (1992) Scanning Electron Micrsocopy and X-ray Microanalysis. Plenum Press, New York and London

    Book  Google Scholar 

  • Goni J, Rémond G (1969) Localization and distribution of impurities in blende by cathodoluminescence. Miner. Mag. 37 (86): 153–156

    Article  Google Scholar 

  • Henderson B, Imbush GF (1989) Optical Spectroscopy of Inorganic Solids. Clarendon Press, Oxford

    Google Scholar 

  • Holt DB, Napchan E (1994) Quantitation of SEM EBIC and CL signals using Monte Carlo electron-trajectory simulations. Scanning 16: 78–86

    Article  Google Scholar 

  • Hörl EM, Roschger P (1980) CL SEM investigations of biological material at liquid helium and liquid nitrogen temperatures. Scanning Electron Microsc. I: 285–292

    Google Scholar 

  • Iacconi P, Caruba R (1984) Trapping and emission centres in X irradiated zircon. Characterisation by thermoluminescence. Phys. Chem. Minerals 11: 195–203

    Article  Google Scholar 

  • Iacconi P, Deville A, Gaillard B (1980) Trapping and emission centres in X irradiated zircon. (II); Contribution of the SiO 4−4 groups. Phys. Stat. Sol. (a) 59: 639–646

    Article  Google Scholar 

  • Jbara O, Cazaux J, Rémond G, Gilles C (1996) Halogen ion electric field assisted diffusion in fluorite and polyvinyl chloride during electron irradiation. J. Appl. Phys. 79: 2309–2313

    Article  Google Scholar 

  • Jbara O, Potron P, Mouze D, Cazaux J (1997) EPMA of insulating materials X-Ray Spectrometry 26: 291–302

    Google Scholar 

  • Kanaya K, Okyama S (1972) In: Goldstein JI Newbury DE, Echlin P, Joy DC, Fiori C, Lifshin E (1992) Scanning Electron Micrsocopy and X-ray Microanalysis. Plenum Press, New York and London p89

    Google Scholar 

  • Kirsh Y, Townsend PD (1987) Electron and hole centres produced in zircon by irradiation at room temperature. J. Phys. C: Solid State Phys., 20, 967–980

    Article  Google Scholar 

  • Koyama H (1980) Cathodoluminescence study of Si02. J. Appl. Phys. 51 (4): 2228–2235

    Article  Google Scholar 

  • Leamy HJ (1982) Charge collection scanning electron microscopy. J. Appl. Phys. 53 (6): R51 - R67

    Article  Google Scholar 

  • Le Poole JB, Bok AB, Boogerd WJ (1968) An electron luminescence microscope. Geologie en Minjbouw 47: 443–450

    Google Scholar 

  • Löhnert K, Hastenrath M, Kubalek E (1979) Spatially resolved cathodoluminescence studies of GaP LED’s in the scanning electron microscope using optical multichannel analysis. Scanning Electron Microsc. I: 229–233

    Google Scholar 

  • Long JVP, Agrell SO (1965) The cathodoluminescence of minerals in thin section. Miner. Mag. 34 (268): 318–326

    Article  Google Scholar 

  • Marfunin ASO (1979) Spectroscopy, Luminescence and Radiation Centers in Minerals. (Translated by W Schiffer). Springer-Verlag, Berlin Heidelberg New-York

    Book  Google Scholar 

  • Marshall DJ (1988) Cathodo-luminescence of Geological Materials. Unwin Hyman, Boston

    Google Scholar 

  • Marshall DJ, Kopp OC (1999) The status of the standards program of the Society for Luminescence Microscopy and Spectroscopy. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in the Geosciences, Springer-Verlag, Berlin (this Vol.)

    Google Scholar 

  • Mattler J, Ceva T (1961) In: Luminescence in Crystals, D. Curie (translated by G F J Garlick), Methuen and Co Ltd, 1963, p 244

    Google Scholar 

  • Merlet C (1992a) Quantitative electron probe microanalysis: New accurate phi-ro-z description. Mikrochimicta Acta 12: 107–115

    Article  Google Scholar 

  • Merlet C (1992b) Accurate description of surface ionisation in electron probe microanalysis: An improved formulation. X-Ray Spectrometry 21: 229–238

    Article  Google Scholar 

  • Nicholas JV (1967) Origin of the luminescence in natural zircon. Nature 215: 1476–1482

    Article  Google Scholar 

  • Packwood RH (1991) A comprehensive theory of electron probe microanalysis. In: Heinrich KFJ, Newbury DE (eds) Electron Probe Quantitation. Plenum Press, New York, pp 83–104

    Google Scholar 

  • Packwood RH, Brown JD (1981) A Gaussian expression to describe 4(pz) curves for quantitative electron probe microanalysis. X-Ray Spectrometry 10: 138–146

    Article  Google Scholar 

  • Packwood RH, Rémond G (1993) The interpretation of x ray and electron signals generated in thin or layered targets. Scanning Microscopy 6: 367–384

    Google Scholar 

  • Pouchou JF, Pichoir F (1984) Un nouveau modele de calcul pour la microanalyse quantitative par spectrometrie de rayons x. Partie I: Application a l’analyse d’echantillons homogenes. La Recherche Aérospatiale 3: 167–192

    Google Scholar 

  • Pouchou JF, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model PAP. In: Heinrich KFJ, Newbury DE (eds) Electron Probe Quantitation. Plenum Press, New York, pp 31–76

    Google Scholar 

  • Ramseyer K, Fischer J, Matter A, Eberhardt P, Geiss JJ (1989) A cathodoluminescence microscope for low intensity luminescence. J. Sedimentary Petrology 619–622

    Google Scholar 

  • Reimer L (1985) Scanning Electron Microscopy, Physics of Image Formation and Microanalysis. Springer-Verlag

    Google Scholar 

  • Rémond G (1977) Applications of cathodoluminescence in mineralogy. J. of Luminescence 15: 121–155

    Article  Google Scholar 

  • Rémond G, Kimoto S, Okuzumi H (1970) Use of the SEM in cathodoluminescence observations in natural specimens Scanning Electron Microsc. 33–40

    Google Scholar 

  • Rémond G, Kimoto S, Okuzumi H (1972) Applications du microscope electronique a balayage a l’etude de la cathodoluminescence de quelques mineraux: Limites de resolution et de sensibilite. In: Shinoda G, Kohra K, Ichinokawa T (eds) Proc. 6th International Conference on X-Ray Optics and Microanalysis., University of Tokyo Press, Tokyo, Japan, pp 611–617

    Google Scholar 

  • Rémond G, Le Gressus C, Okuzumi H (1979) Electron beam effects observed in cathodoluminescence and Auger electron spectroscopy in natural minerals: Evidence for ionic diffusion. Scanning Electron Microsc. I: 237–244

    Google Scholar 

  • Rémond G, Cesbron F, Chapoulie R, Ohnenstetter D, Roques-Carmes C, Schvoerer M (1992) Cathodoluminescence applied to the microcharacterization of mineral materials: A present status in experimentation and interpretation. Scanning Microscopy 6: 23–68

    Google Scholar 

  • Rémond G, Campbell JL, Packwood RH, Fialin M (1993) Spectral decomposition of wavelength dispersive X-ray spectra: Implications for quantitative analysis in the electron probe micro-analyser. Scanning Microscopy Supp 17: 89–132

    Google Scholar 

  • Rémond G, Cazaux J, Fialin M (1994) X-ray spectrometry with electron probe microanalysis: The problem of soft peaks emitted from insulators. In:, Jouffrey B., Colliex C. (eds) Proc. 13th International Conference on Electron Microscopy, vol.1, Interdisciplinary Developments and Tools. Les Editions de Physique, 91944 Les Ullis, France, pp 785–786

    Google Scholar 

  • Rémond G, Cesbron F, Blanc P, Ohnenstetter D, Rouer O (1995a) Cathodoluminescence of rare earth doped zircons. II: Relationship between the distribution of the doping elements and the contrasts of images. Scanning Microscopy Supp. 9: 57–76

    Google Scholar 

  • Rémond G, Packwood RH, Gilles C (1995b) Trace element standards for the electron microanalyser using layered and ion implanted materials. The Analyst 120: 1247–1260

    Article  Google Scholar 

  • Rémond G, Gilles C, Fialin M, Rouer O, Marinenko R, Myklebust R, Newbury D, (1996) Intensity measurement of wavelength dispersive X-ray emission bands: Applications to the soft X-ray region. Mikrochimica Acta Supp 13: 61–86

    Google Scholar 

  • Semo J (1974) Spectroscopie optique en cathodoluminescence au microscope electronique a balayage. Revue de Physique Appliquee 9: 355–359

    Article  Google Scholar 

  • Shea SP, Partain LD, Warter PJ (1978) Resolution limits of the EBIC technique in the determina- tion of diffusion lengths in semiconductors. Scanning Electron Microscopy I: 435–444

    Google Scholar 

  • Shimizu R, Ding ZJ (1992) Monte Carlo modelling of electron-solid interactions. Rep. Prog. Phys. 487–531

    Google Scholar 

  • Sippel RF (1965) A simple device for luminescence petrography., Review of Scientific Instruments 36 (1): 556–558

    Article  Google Scholar 

  • Stevens Kalceff, MA, Phillips MR (1995a) Electron irradiation induced outgrowths from quartz. Appl. Phys. 77 (8): 4125–4127

    Article  Google Scholar 

  • Stevens Kalceff MA, Phillips MR (1995b) Cathodoluminescence microcharacterization of the defect structure of quartz. Phys. Rev. B. 52: 3122–3134

    Article  Google Scholar 

  • Stevens Kalceff MA, Phillips MR, Moon AR (1999) Cathodoluminescence micro-characterisation of silicon dioxide polymorphs. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in the Geosciences, Springer-Verlag, Berlin (this Vol.)

    Google Scholar 

  • Stevens Kalceff MA, Phillips MR, Moon AR (1996) Electron irradiation-induced changes in the surface topography of silicon dioxide. J. Appl. Phys. 80 (8): 4308–4314

    Article  Google Scholar 

  • Stewart JE, Gallaway WS (1962) Diffraction anomalies in grating spectrophotometers. Appl. Optics 1 (4): 421–429

    Article  Google Scholar 

  • Steyn JB, Giles P, Holt DB (1976) An fficient spectroscopic detection system for cathodoluminescence mode scanning electron microscopy (SEM). J. Microscopy 107 (2): 107–128

    Article  Google Scholar 

  • Trigg AD (1985) A high efficiency cathodoluminescence system and its application to optical materials Scanning Electron Microsc. III: 1011–1022

    Google Scholar 

  • Vigouroux JP, Duraud JP, Le Gressus C, Petite G, Agostini P, Boiziau C (1985) Study by scanning electron microscopy and electron spectroscopy of the cascade of electron multiplication in an insulator submitted to an electrical field. Scanning Electron Microscopy (I): 179–182

    Google Scholar 

  • Warwick CA (1987) Recent advances in scanning electron microscope cathodoluminescence assessment of GaAs and InP. Scanning Microscopy (1): 51–61

    Google Scholar 

  • Yacobi BG, Holt DB (1990) Cathodoluminescence Microscopy of Inorganic Solids. Plenum Press, New York, London

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Remond, G., Phillips, M.R., Roques-Carmes, C. (2000). Importance of Instrumental and Experimental Factors on the Interpretation of Cathodoluminescence Data from Wide Band Gap Materials. In: Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D. (eds) Cathodoluminescence in Geosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04086-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04086-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08526-0

  • Online ISBN: 978-3-662-04086-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics