Skip to main content

Integration Schemes for Molecular Dynamics and Related Applications

  • Chapter
The Graduate Student’s Guide to Numerical Analysis ’98

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 26))

Summary

A variety of modern practical techniques are presented for the derivation of integration schemes that are useful for molecular dynamics and a variety of related applications. In particular, the emphasis is on Hamiltonian systems, including those with constraints, and to a lesser extent stochastic differential equations. Among the techniques discussed are operator splitting, multiple time stepping, and accuracy enhancement through “post-processing.” Attention is also given to analytical tools for selecting among different integration schemes, for example, small-time-step analysis of the backward error, linear analysis, and small-energy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Clarendon Press, Oxford, New York, 1987. Reprinted in paperback in 1989 with corrections.

    Google Scholar 

  2. H. C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys., 72: 2384–2393, 1980.

    Article  Google Scholar 

  3. H. C. Andersen. Rattle: A `velocity’ version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys., 52: 24–34, 1983.

    Article  MATH  Google Scholar 

  4. V. I. Arnol’d. Mathematical Methods of Classical Mechanics. Springer-Verlag, New York, second edition, 1989.

    MATH  Google Scholar 

  5. E. Barth, K. Kuczera, B. Leimkuhler, and R. D. Skeel. Algorithms for constrained molecular dynamics. J. Comput. Chem., 16 (10): 1192–1209, Oct. 1995.

    Article  Google Scholar 

  6. E. Barth, M. Mandziuk, and T. Schlick. A separating framework for increasing the timestep in molecular dynamics. In W. F. van Gunsteren, P. K. Weiner, and A. J. Wilkinson, editors, Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, volume 3, chapter 4, pages 97–121. ESCOM, Leiden, The Netherlands, 1996.

    Google Scholar 

  7. G. Benettin and A. Giorgilli. On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J. Statist. Phys., 74: 1117–1143, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. J. Biesiadecki and R. D. Skeel. Dangers of multiple-time-step methods. J. Comput. Phys., 109 (2): 318–328, Dec. 1993.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Bishop, R. D. Skeel, and K. Schulten. Difficulties with multiple timestepping and the fast multipole algorithm in molecular dynamics. J. Comput. Chem., 18(14):1785–1791, Nov. 15, 1997.

    Google Scholar 

  10. S. D. Bond, B. J. Leimkuhler, and B. B. Laird. The Nosé—Poincaré method for constant temperature molecular dynamics. Manuscript, 1998.

    Google Scholar 

  11. K. Brenan, S. Campbell, and L. Petzold. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, 1989.

    Google Scholar 

  12. A. Brünger, C. B. Brooks, and M. Karplus. Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem. Phys. Lett., 105: 495–500, 1982.

    Article  Google Scholar 

  13. O. Buneman. Time-reversible difference procedures. J. Comput. Phys., 1: 517–535, 1967.

    Article  MATH  Google Scholar 

  14. J. C. Butcher. The effective order of Runge-Kutta methods. In A. Dold, Z. Heidelberg, and B. Eckmann, editors, Conference on the Numerical Solution of Differential Equations, Lecture Notes in Mathematics, volume 109, pages 133–139. Springer-Verlag, New York, 1969.

    Google Scholar 

  15. M. Calvo and J. Sanz-Serna. The development of variable-step symplectic integrators, with applications to the two-body problem. SIAM J. Sci. Statist. Comput., 14: 936–952, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Candy and W. Rozmus. A symplectic integration algorithm for separable Hamiltonian functions. J. Comput. Phys., 92: 230–256, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. J. Channell and J. C. Scovel. Symplectic integration of Hamiltonian systems. Nonlinearity, 3: 231–259, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. M. Chawla. On the order and attainable intervals of periodicity of explicit Nyström methods for y“ = f (t, y). SIAM J. Numer. Anal., 22: 127–131, Feb. 1985.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. E. Davis, J. D. Madura, B. A. Luty, and J. A. McCammon. Electrostatics and diffusion of molecules in solution: Simulations with the University of Houston Brownian dynamics program. Computer Phys. Comms., 62: 187–197, 1991.

    Article  Google Scholar 

  20. R. De Vogelaére. Methods of integration which preserve the contact transformation property of Hamiltonian equations. Technical Report 4, Department of Mathematics, University of Notre Dame, 1956.

    Google Scholar 

  21. J. Delambre. Mem. Acad. Turin,5:143, 1790–1793.

    Google Scholar 

  22. J. M. Deutsch and I. Oppenheim. J. Chem. Phys., 54: 3547, 1971.

    Article  Google Scholar 

  23. A. Dullweber, B. Leimkuhler, and R. McLachlan. A symplectic splitting method for rigid-body molecular dynamics. J. Chem. Phys., 107: 5840, 1997.

    Article  Google Scholar 

  24. D. L. Ermak and J. A. McCammon Brownian dynamics with hydrodynamic interactions. J. Chem. Phys., 69(4):1352–1360, Aug. 15, 1978.

    Google Scholar 

  25. D. J. Evans. On the representation of orientation space. Mol. Phys., 34 (2): 317–325, 1977.

    Article  Google Scholar 

  26. D. J. Evans and G. P. Moriss. Non-Newtonian molecular dynamics. Comput. Phys. Rep., 1: 297–344, 1984.

    Article  Google Scholar 

  27. S. E. Feller, Y. Zhang, R. W. Pastor, and B. R. Brooks. Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys., 103 (11): 4613–4621, 1995.

    Article  Google Scholar 

  28. K. Feng. On difference schemes and symplectic geometry. In K. Feng, editor, Proc. 1984 Beijing Symposium on Differential Geometry and Differential Equations-Computation of Differential Equations, pages 42–58, Science Press, Beijing, 1985.

    Google Scholar 

  29. A. Fischer, F. Cordes, and C. Schütte. Hybrid Monte Carlo with adaptive temperature in a mixed-canonical ensemble: Efficient conformational analysis of ma. Technical Report SC 97–67, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Dec. 1997. Available via http://www.zib.de/bib/pub/pw/.

    Google Scholar 

  30. M. Fixman. Simulation of polymer dynamics. I. General theory. J. Chem. Phys., 69: 1527–1537, 1978.

    Article  Google Scholar 

  31. E. Forest and R. D. Ruth. Fourth-order symplectic integration. Physica D, 43: 105–117, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Forester and W. Smith. On multiple time-step algorithms and the Ewald sum. Mol. Sim., 13 (3): 195–204, 1994.

    Article  Google Scholar 

  33. D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, 1996.

    Google Scholar 

  34. B. García-Archilla, J. M. Sanz-Serna, and R. D. Skeel. Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. To appear. [Also Tech. Rept. 1996/7, Dep. Math. Aplic. Comput., Univ. Valladolid, Valladolid, Spain].

    Google Scholar 

  35. Z. Ge and J. E. Marsden. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A, 133 (3): 134–139, 1988.

    Article  MathSciNet  Google Scholar 

  36. C. Gear and D. Wells. Multirate linear multistep methods. BIT, 24: 484–502, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  37. C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs, N. J., 1971.

    Google Scholar 

  38. D. Goldman and T. J. Kaper. Nth-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal., 33: 349–367, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  39. O. Gonzalez and J. Simo. On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry. Computer Methods in Applied Mechanics and Engineering, 134: 197–222, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Grubmüller. Dynamiksimulation sehr großer Makromoleküle auf einem Parallelrechner. Master’s thesis, Physik-Dept. der Tech. Univ. München, Munich, 1989.

    Google Scholar 

  41. H. Grubmüller. Molekular dynamck von Proteinen auf langen Zeitskalen. PhD thesis, Physik-Dept. der Tech. Univ. München, Munich, 1994.

    Google Scholar 

  42. H. Grubmüller, H. Heller, A. Windemuth, and K. Schulten. Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Molecular Simulation, 6: 121–142, 1991.

    Article  Google Scholar 

  43. J. M. Haile. Molecular Dynamics Simulation. John Wiley and Sons, 1992.

    Google Scholar 

  44. E. Hairer. Backward error analysis of numerical integrators and symplectic methods. Annals of Numer. Math., 1: 107–132, 1994.

    MathSciNet  MATH  Google Scholar 

  45. E. Hairer. Variable time step integration with symplectic methods. Appl. Numer. Math., 25 (2–3): 219–227, Nov. 1997.

    Article  MathSciNet  MATH  Google Scholar 

  46. E. Hairer and P. Leone. Order barriers for symplectic multi-value methods. In D. Griffiths, D. Higham, and G. Watson, editors, Proceedings of the 17th Dundee Biennial Conference, June 24–27, 1997,volume 380 of Pitman Research Notes in Mathematics,pages 133–149, 1998.

    Google Scholar 

  47. E. Hairer and C. Lubich. The lifespan of backward error analysis for numerical integrators. Numer. Math., 76: 441–462, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  48. E. Hairer and C. Lubich. Asymptotic expansions and backward analysis for numerical integrators. manuscript, 1998.

    Google Scholar 

  49. D. J. Hardy, D. I. Okunbor, and R. D. Skeel. Symplectic variable stepsize integration for N-body problems. Appl. Numer. Math., 1998. To appear.

    Google Scholar 

  50. A. Hayli. Le problème des N corps dans un champ extérieur application a l’évolution dynamique des amas ouverts-I. Bulletin Astronomique, 2: 67–89, 1967.

    Google Scholar 

  51. H. Heller, M. Schaefer, and K. Schulten. Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal-phases. J. Phys. Chem., 97: 8343–8360, 1993.

    Article  Google Scholar 

  52. M. Holst, R. Kozack, F. Saied, and S. Subramaniam. Treatment of electrostatic effects in proteins: Multigrid-based Newton iterative method for solution of the full nonlinear Poisson-Boltzmann equation. Proteins: Structure, Function, and Genetics, 18 (3): 231–245, 1994.

    Google Scholar 

  53. J. Honerkamp. Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis. VCH, 1994.

    Google Scholar 

  54. W. G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31: 1695–1697, 1985.

    Article  Google Scholar 

  55. W. Huang and B. Leimkuhler. The adaptive Verlet method. SIAM J. Sci. Comput., 18: 239–256, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  56. D. D. Humphreys, R. A. Friesner, and B. J. Berne. A multiple-time-step molecular dynamics algorithm for macromolecules. J. Phys. Chem., 98(27):6885–6892, July 7, 1994.

    Google Scholar 

  57. H. Ishida, Y. Nagai, and A. Kidera. Symplectic integrator for molecular dynamics of a protein in water. Chem. Phys. Letts., 282(2):115–120, Jan. 9, 1998.

    Google Scholar 

  58. J. Izaguirre, S. Reich, and R. D. Skeel. Longer time steps for molecular dynamics Submitted for publication.

    Google Scholar 

  59. D. Janeiic and F. Merzel. An efficient symplectic integration algorithm for molecular dynamics simulations. J. Chem. Inf. Comput. Sci., 35: 321–326, 1995.

    Article  Google Scholar 

  60. P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations, volume 23 of Applications of Mathematics: Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 1992. Second corrected printing 1995.

    Google Scholar 

  61. P. E. Kloeden, E. Platen, and H. Schurz. Numerical Solution of SDE Through Computer Experiments. Springer-Verlag, 1994.

    Google Scholar 

  62. A. Kol, B. Laird, and B. Leimkuhler. A symplectic method for rigid-body molecular simulation. J. Chem. Phys., 107 (7), 1997.

    Google Scholar 

  63. J D Lambert and I. A. Watson. Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Applics., 18: 189–202, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  64. A. Lasota and M. C. Mackey. Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics. Springer-Verlag, New York, second edition, 1994.

    MATH  Google Scholar 

  65. A. R. Leach. Molecular Modelling: Principles and Applications. Addison-Wesley Longman, Reading, Mass., July 1996.

    Google Scholar 

  66. B. Leimkuhler and S. Reich. The numerical solution of constrained Hamiltonian systems. Math. Comput., 63: 589–605, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  67. B. Leimkuhler and R. D. Skeel. Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys., 112 (1): 117–125, May 1994.

    Article  MathSciNet  MATH  Google Scholar 

  68. B. J. Leimkuhler, S. Reich, and R. D. Skeel. Integration methods for molecular dynamics. In J. P. Mesirov, K. Schulten, and D. W Sumners, editors, Mathematical Approaches to Biomolecular Structure and Dynamics, volume 82 of IMA Volumes in Mathematics and its Applications, pages 161–185. Springer-Verlag, 1996.

    Google Scholar 

  69. T. R. Littell, R. D. Skeel, and M. Zhang. Error analysis of symplectic multiple time stepping. SIAM J. Numer. Anal., 34 (5): 1792–1807, Oct. 1997.

    Article  MathSciNet  MATH  Google Scholar 

  70. M. López-Marcos, J. M. Sanz-Serna, and R. D. Skeel. Cheap enhancement of symplectic integrators. In D. F. Griffiths and G. A. Watson, editors, Numerical Analysis 1995, pages 107–122, London, 1996. Longman Group.

    Google Scholar 

  71. M. López-Marcos, J. M. Sanz-Serna, and R. D. Skeel. Explicit symplectic integrators with maximal stability intervals. In D. F. Griffiths and G. A. Watson, editors, Numerical Analysis, A. R. Mitchell 75th Birthday Volume, pages 163–176, World Scientific, Singapore, June 1996.

    Chapter  Google Scholar 

  72. M. López-Marcos, J. M. Sanz-Serna, and R. D. Skeel. Explicit symplectic integrators using Hessian-vector products. SIAM J. Sci. Comput., 18: 223–238, Jan. 1997.

    Article  MathSciNet  MATH  Google Scholar 

  73. M. Mandziuk and T. Schlick. Resonance in the dynamics of chemical systems simulated by the implicit midpoint scheme. Chem. Phys. Letters, 237: 525–535, 1995.

    Article  Google Scholar 

  74. G. J. Martyna. Remarks on `constant-temperature molecular dynamics with momentum conservation’. Phys. Rev. E, 50 (4): 3234–3236, 1994.

    Article  Google Scholar 

  75. G. J. Martyna, M. L. Klein, and M. Tuckerman. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 97 (5): 2635–2643, 1992.

    Article  Google Scholar 

  76. G. J. Martyna, D. J. Tobias, and M. L. Klein. Constant pressure molecular dynamics algorithms. J. Chem. Phys, 101(5):4177–4189, Sept. 1, 1994.

    Google Scholar 

  77. R. McLachlan and J. Scovel. Equivariant constrained symplectic integration. Nonlinear Sci., 5: 233–256, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  78. R. I. McLachlan. Explicit Lie-Poisson integration and the Euler equations,. Phys. Rev. Lett., 71: 3043–3046, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  79. R. I. McLachlan. More on symplectic correctors. In J. E. Marsden, G. W. Patrick, and W. F. Shadwick, editors, Integration Algorithms and Classical Mechanics, pp. 141–149, volume 10 of Fields Institute Communications. Fields Institute, American Mathematical Society, July 1996.

    Google Scholar 

  80. R. I. McLachlan and P. Atela. The accuracy of symplectic integrators. Non-linearity, 5: 541–562, March 1992.

    MathSciNet  MATH  Google Scholar 

  81. R. I. McLachlan and S. K. Gray. Optimal stability polynomials for splitting methods, with application to the time-dependent Schrödinger equation. Appl. Numer. Math., 25 (2–3): 275–286, Nov. 1997.

    Article  MathSciNet  MATH  Google Scholar 

  82. B. Mehlig, D. W. Heermann, and B. M. Forrest. Hybrid Monte Carlo method for condensed-matter systems. Phys. Rev. B, 45(2):679–685, Jan. 1, 1992.

    Google Scholar 

  83. S. Melchionna, G. Ciccotti, and B. L. Holian. Hoover NPT dynamics for systems varying in shape and size. Mol. Phys., 78 (3): 533–544, 1993.

    Article  Google Scholar 

  84. M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kalé, R. D. Skeel, and K. Schulten. NAMD—a parallel, object-oriented molecular dynamics program. Intl. J. Supercomput. Applies. High Performance Computing, 10 (4): 251–268, Winter 1996.

    Google Scholar 

  85. S. H. Northrup, S. A. Allison, and J. A. McCammon. Brownian dynamics simulation of diffusion-influenced bimolecular reactions. J. Chem. Phys., 80 (4): 1517–1524, 1984.

    Article  Google Scholar 

  86. S. Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81: 511, 1984.

    Article  Google Scholar 

  87. B. Øksendal. Stochastic Differential Equations: An Introduction with Applications. Springer-Verlag, fifth edition, 1998.

    Google Scholar 

  88. D. Okunbor and R. D. Skeel. Explicit canonical methods for Hamiltonian systems. Math. Comput., 59 (200): 439–455, Oct. 1992.

    Article  MathSciNet  MATH  Google Scholar 

  89. D. Okunbor and R. D. Skeel. Canonical numerical methods for molecular dynamics simulations. J. Comput. Chem., 15 (1): 72–79, Jan. 1994.

    Article  Google Scholar 

  90. A. Portillo and J. M. Sanz-Serna. Lack of dissipativity is not symplecticness. BIT Numer. Math., 35 (2): 269–276, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  91. G. D. Quinlan and S. Tremaine. Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J., 100: 1694–1700, 1990.

    Article  Google Scholar 

  92. S. Reich. Backward error analysis for numerical integrators. SIAM J. Numer. Anal., to appear.

    Google Scholar 

  93. S. Reich. Momentum preserving symplectic integrators. Physica D, 76(4):375–383, Sept. 10, 1994.

    Google Scholar 

  94. S. Reich. A free energy approach to the torsion dynamics of macromolecules. Technical Report SC 95–17, Konrad-Zuse-Zentrum für Informationstechnik Berlin, June 1995.

    Google Scholar 

  95. S. Reich. Smoothed dynamics of highly oscillatory Hamiltonian systems. Physica D, 89(1 and 2):28–42, Dec. 21, 1995.

    Google Scholar 

  96. G. Rowlands. A numerical algorithm for Hamiltonian systems. J. Comput. Phys., 97: 235–239, Nov. 1991.

    Article  MathSciNet  MATH  Google Scholar 

  97. R. D. Ruth. A canonical integration technique. IEEE Trans. Nucl. Sci., 30 (4): 2669–2671, 1983.

    Article  Google Scholar 

  98. J. Sanz-Serna and M. Calvo. Numerical Hamiltonian Problems. Chapman and Hall, London, 1994.

    MATH  Google Scholar 

  99. J. M. Sanz-Serna. Runge-Kutta schemes for Hamiltonian systems. BIT, 28: 877–883, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  100. J. M. Sanz-Serna. Two topics in nonlinear stability. In W. Light, editor, Advances in Numerical Analysis, pages 147–174. Clarendon Press, Oxford, 1991.

    Google Scholar 

  101. J. M. Sanz-Serna. Symplectic integrators for Hamiltonian problem: an overview. Acta Numerica, 1: 243–286, 1992.

    Article  MathSciNet  Google Scholar 

  102. T. Schlick, M. Mandziuk, R. D. Skeel, and K. Srinivas. Nonlinear resonance artifacts in molecular dynamics simulations. J. Comput. Phys., 139: 1–29, 1998.

    Article  MathSciNet  Google Scholar 

  103. C. Schütte, A. Fischer, W. Huisinga, and P. Deuflhard A hybrid Monte Carlo method for essential molecular dynamics. Technical Report SC 98–04, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Feb. 1998. Available via http://www.zib.de/bib/pub/pw/.

    Google Scholar 

  104. C. Scovel. On symplectic lattice maps. Physics Letters A, 159: 396–400, Aug. 1991.

    Article  MathSciNet  Google Scholar 

  105. C. Scovel. Symplectic numerical integration of Hamiltonian systems. In T. Ratiu, editor, The Geometry of Hamiltonian Systems: Proceedings of Workshop Held June 5–16, 1989, pages 463–496. Mathematical Sciences Research Institute, Springer-Verlag, 1991.

    Chapter  Google Scholar 

  106. Q. Sheng. Solving Partial Differential Equations by Exponential Splitting. PhD thesis, King’s College, Cambridge, Oct. 1988.

    Google Scholar 

  107. J. C. Simo and N. Tarnow. A review of conserving algorithms for nonlinear dynamics. Technical Report SUDAM Report 92–7, Dept. Mechanical Engineering, Stanford Univ., Calif., 1992.

    Google Scholar 

  108. R. D. Skeel. Variable step size destabilizes the Störmer/leapfrog/Verlet method. BIT, 33: 172–175, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  109. R. D. Skeel. Symplectic integration with floating-point arithmetic and other approximations. Appl. Numer. Math., 1998. To appear.

    Google Scholar 

  110. R. D. Skeel and J. J. Biesiadecki. Symplectic integration with variable stepsize. Annals of Numer. Math., 1: 191–198, 1994.

    MathSciNet  MATH  Google Scholar 

  111. R. D. Skeel and C. W. Gear. Does variable step size ruin a symplectic integrator? Physica D, 60: 311–313, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  112. R. D. Skeel and J. Izaguirre. The five femtosecond time step barrier. In P. Deuflhard, J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D. Skeel, editors, Algorithms for Macromolecular Modelling, volume 4 of Lecture Notes in Computational Science and Engineering, pages 303–318. Springer-Verlag, 1998.

    Google Scholar 

  113. R. D. Skeel, G. Zhang, and T. Schlick. A family of symplectic integrators: stability, accuracy, and molecular dynamics applications. SIAM J. Sci. Comput., 18 (1): 203–222, Jan. 1997.

    Article  MathSciNet  MATH  Google Scholar 

  114. D. M. Stoffer. Some Geometric and Numerical Methods for Perturbed Integrable Systems. PhD thesis, Swiss Federal Institute of Technology, Zürich, 1988.

    Google Scholar 

  115. C. Störmer. Sur les trajectoires des corpuscles életrisés. Arch. Sci., 24:5–18, 113–158, 221–247, 1907.

    Google Scholar 

  116. W. B. Streett, D. Tildesley, and G. Saville. Multiple time step methods in molecular dynamics. Mol. Phys., 35: 639–648, 1978.

    Article  Google Scholar 

  117. S. J. Stuart, R. H. Zhou, and B. J. Berne. Molecular dynamics with multiple time scales-the selection of efficient reference system propagators. J. Chem. Phys., 105(4):1426–1436, July 22, 1996.

    Google Scholar 

  118. M. Suzuki. General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys., 32 (2), Feb. 1991.

    Google Scholar 

  119. M. Suzuki. Improved Trotter-like formula. Physics Letters A, 180 (3), June 1993.

    Google Scholar 

  120. D. J. Tobias, G. J. Martyna, and M. L. Klein. Molecular dynamics simulations of a protein in the canonical ensemble. J. Phys. Chem., 97 (47): 12959–12966, 1993.

    Article  Google Scholar 

  121. S. Toxvaerd. Hamiltonians for discrete dynamics Phys. Rev. E,1995.

    Google Scholar 

  122. M. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible multiple time scale molecular dynamics. J. Chem. Phys, 97 (3): 1990–2001, 1992.

    Article  Google Scholar 

  123. W. F. van Gunsteren and H. J. C. Berendsen. Algorithms for macromolecular dynamics and constraint dynamics. Molecular Phys, 34: 1311–1327, 1977.

    Article  Google Scholar 

  124. W. F. van Gunsteren and H. J. C. Berendsen. A leap-frog algorithm for stochastic dynamics. Molecular Simulation, 1987.

    Google Scholar 

  125. W. F. van Gunsteren and H. J. C. Berendsen. GROMOS Manual. BIOMOS b. v., Lab. of Phys. Chem., Univ. of Groningen, 1987.

    Google Scholar 

  126. L. Verlet. Computer `experiments’ on condensed fluids I. thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159: 98–103, 1967.

    Article  Google Scholar 

  127. R. F. Warming and B. J. Hyett. The modified equation approach to the stability and accuracy analysis of finite difference methods. J. Comput. Phys, 14: 159–179, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  128. M. Watanabe and M. Karplus. Simulation of macromolecules by multipletime-step methods. J. Phys. Chem., 99(15):5680–5697, Apr. 13, 1995.

    Google Scholar 

  129. J. Wisdom. The origin of the Kirkwood gaps: A mapping for asteroidal motion near the 3/1 commensurability. Astr. J., 87: 577–593, 1982.

    Article  MathSciNet  Google Scholar 

  130. J. Wisdom, M. Holman, and J. Tolima. Symplectic correctors. In J. E. Marsden, G. W. Patrick, and W. F. Shadwick, editors, Integration Algorithms and Classical Mechanics, pp. 217–244, volume 10 of Fields Institute Communications. Fields Institute, American Mathematical Society, July 1996.

    Google Scholar 

  131. H. Yoshida. Construction of higher order symplectic integrators. Phys. Lett. A, 150: 262–268, 1990.

    Article  MathSciNet  Google Scholar 

  132. M. Q. Zhang and R. D. Skeel. Symplectic integrators and the conservation of angular momentum. J. Comput. Chem., 16:365–369, Max. 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skeel, R.D. (1999). Integration Schemes for Molecular Dynamics and Related Applications. In: Ainsworth, M., Levesley, J., Marletta, M. (eds) The Graduate Student’s Guide to Numerical Analysis ’98. Springer Series in Computational Mathematics, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03972-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03972-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08503-1

  • Online ISBN: 978-3-662-03972-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics