Skip to main content

Use of Plant Mutants, Intraspecific Variants, and Non-Hosts in Studying Mycorrhiza Formation and Function

  • Chapter
Mycorrhiza

Abstract

Many questions in developmental biology have been addressed by the use of mutants showing one or more genetically based phenotypic variations from the wild type. In plant biology this approach has been particularly useful, utilizing Arabidopsis thaliana, a dicotyledonous angiosperm species with a small genome and a short life cycle. The short life cycle and the small size of the plant allow the effective screening in petri plates of large numbers of plants for spontaneous or induced mutations (Somerville 1989; Schiefelbein and Benfey 1991). This species, unfortunately, is normally non-mycorrhizal (but see Kruckelmann 1975) and does not associate with symbiotic bacteria, so other more complex systems have been used to study symbioses. The Rhizobium-legume symbiosis has been explored in detail using both plant and Rhizobium mutants (Verma and Brisson 1987), and considerable information has been obtained concerning the genetic control by both symbionts in the complex processes of nodulation and nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen MF (1983) Formation of vesicular-arbuscular mycorrhizae in Atriplex gardneri (Chenopodiaceae): seasonal response in a cold desert. Mycologia 75: 773–776

    Article  Google Scholar 

  • Allen MF, Allen EB (1990) Carbon source of VA mycorrhizal fungi associated with Chenopodiaceae from a semiarid shrub-steppe. Ecology 71: 2019–2021

    Article  Google Scholar 

  • Allen MF, Allen EB, Friese EB (1989) Responses of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytol 111: 45–49

    Article  Google Scholar 

  • Avio L, Sbrana C, Giovannetti M (1990) The response of different species of Lupinus to VAM endophytes. Symbiosis 9: 321–323

    Google Scholar 

  • Azcòn R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol 87: 677–685

    Article  Google Scholar 

  • Barnes DK, Vance CP, Heichel GH, Peterson MA, Ellis WR (1988) Registration of a non-nodulation and three ineffective nodulation alfalfa germplasms. Crop Sci 28: 721–722

    Article  Google Scholar 

  • Bécard G, Piché Y (1990) Physiological factors determining vesicular-arbuscular mycorrhizal formation in host and non-host Ri T-DNA transformed roots. Can J Bot 68: 1260–1264

    Article  Google Scholar 

  • Bertheau Y, Gianinazzi-Pearson V, Gianinazzi S (1980) Développement et expression de l’association endomycorhizienne chez le Blé I. Mise en évidence d’un effet variétal. Ann Amélior Plant 30: 67–78

    Google Scholar 

  • Bevege DI, Bowen GD (1975) Endogone strain and host plant differences in development of vesicular-arbuscular mycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 77–86

    Google Scholar 

  • Bhattarai ID, Mishra RR (1984) Study on the vesicular-arbuscular mycorrhiza of three cultivars of potato (Solanum tuberosum L.). Plant Soil 79: 299–303

    Article  Google Scholar 

  • Blair DA (1987) A comparative study of mycorrhizal associations between Glomus versiforme and roots of Lotus and Trifolium. MSc Thesis, University of Guelph, Guelph, Ontario

    Google Scholar 

  • Bonfante-Fasolo P (1984) Anatomy and morphology of VA mycorrhizae. In: Powell CLI, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press, Boca Raton, pp 5–33

    Google Scholar 

  • Bradbury SM (1992) Colonization of three alfalfa nodulation genotypes by vesiculararbuscular mycorrhizal fungi. MSc Thesis, University of Guelph, Guelph, Ontario

    Google Scholar 

  • Bradbury SM, Peterson RL, Bowley SR (1991) Interactions between three alfalfa nodulation genotypes and two Glomus species. New Phytol 119: 115–120

    Article  Google Scholar 

  • Bradbury SM, Peterson RL, Bowley SR (1993) Further evidence for a correlation between nodulation genotypes in alfalfa (Medicago sativa L.) and mycorrhiza formation. New Phytol 124: 665–673

    Article  Google Scholar 

  • Cline ML, Reid CPP (1982) Seed source and mycorrhizal fungus effects on growth of containerized Pinus contorta and Pinus ponderosa seedlings. For Sci 28: 237–250

    Google Scholar 

  • Coltman RR, Kuo W-H (1991) Screening for low-phosphorus tolerance among tomato strains. In: Wright RJ (eds) Plant-soil interactions at low pH. Kluwer, Dordrecht, pp 967–975

    Chapter  Google Scholar 

  • Daniels BA, Trappe JM (1980) Factors affecting spore germination of the vesiculararbuscular mycorrhizal fungus, Glomus epigaeus. Mycologia 72: 457–471

    Article  CAS  Google Scholar 

  • Dixon RK, Garrett HE, Stelzer HE (1987) Growth and ectomycorrhizal development of loblolly pine progenies inoculated with three isolates of Pisolithus tinctorius. Silvae Genet 36: 240–245

    Google Scholar 

  • Duc E, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of nodnodulating plant mutants (myc-) obtained in pea (Pisum sativum L.) and Faba bean (Vicia faba L.). Plant Sci 60: 215–222

    Article  Google Scholar 

  • Duddridge JA (1986) The development and ultrastructure of ectomycorrhizas. IV. Compatible and incompatible interactions between Suillus grevillei (Klotzsch) Sing. and a number of ectomycorrhizal hosts in vitro in the presence of exogenous carbohydrate. New Phytol 103: 465–471

    Article  CAS  Google Scholar 

  • El-Atrach F, Vierheilig H, Ocampo JA (1989) Influence of non-host plants on vesicular-arbuscular mycorrhizal infection of host plants on spore germination. Soil Biol Biochem 21: 161–163

    Article  Google Scholar 

  • EstatIn V, Calvet C, Hayman DS (1987) Influence of plant genotype on mycorrhizal infection: response of three pea cultivars. Plant Soil 103: 295–298

    Article  Google Scholar 

  • Garriock ML, Peterson RL, Ackerley CA (1989) Early stages in colonization of Allium porrum (leek) roots by the vesicular-arbuscular mycorrhizal fungus Glomus versiforme. New Phytol 112: 85–92

    Article  Google Scholar 

  • Gerdemann JW (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6: 397–418

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1989) Cellular and genetical aspects of interactions between hosts and fungal symbionts in mycorrhizae. Genome 31: 336–341

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7: 243–255

    CAS  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S, Guillemin JP, Trouvelot A, Duc G (1991) Genetic and cellular analysis of resistance of vesicular-arbuscular (VA) mycorrhizal fungi in pea mutants. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 336–342

    Google Scholar 

  • Glenn MG, Chew FS, Williams PH (1985) Hyphal penetration of Brassica (Cruciferae) roots by a vesicular-arbuscular mycorrhizal fungus. New Phytol 99: 463–472

    Article  Google Scholar 

  • Glenn MG, Chew FS, Williams PH (1988) Influence of glucosinalate content of Brassica (Cruciferae) roots on growth of vesicular-arbuscular mycorrhizal fungi. New Phytol 110: 217–225

    Article  CAS  Google Scholar 

  • Gollotte A, Gianinazzi-Pearson V, Giovannetti M, Sbrana C, Avio L, Gianinazzi S (1993) Cellular localization and cytochemical probing of resistance reactions to arbuscular mycorrhizal fungi in a “locus a” myc-mutant of Pisum sativum L. Planta 191: 112–122

    Article  CAS  Google Scholar 

  • Graham JH, Eissenstat DM (1993) Host genotype and the formation and function of VA mycorrhizae. Plant Soil (in press)

    Google Scholar 

  • Graham JH, Eissenstat DM, Drouillard DL (1991) On the relationship between a plant’s mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Funct Ecol 5: 773–779

    Article  Google Scholar 

  • Granger RL, Plenchette C, Fortin JA (1983) Effect of a vesicular arbuscular (VA) endomycorrhizal fungus (Glomus epigaeum) on the growth and leaf mineral content of two apple clones propagated in vitro. Can J Plant Sci 63: 551–555

    Article  CAS  Google Scholar 

  • Guillemin J-P, Gianinazzi S, Gianinazzi-Pearson V, Duc G, Trouvelot A, Morandi D (1990) Plant genes determining VA endomycorrhizal infection. In: 8th NACOM Innovation and Hierarchial Integration Abstr Jackson Hole, Wyoming September, 1990. Compiled by MF Allen and SE Williams

    Google Scholar 

  • Habte MA, Manjunath A (1991) Categories of vesicular-arbuscular mycorrhizal dependency of host species. Mycorrhiza 1: 3–12

    Article  Google Scholar 

  • Hall IR (1978) Effect of vesicular-arbuscular mycorrhizal on two varieties of maize and one of sweet corn. NZ J Agric Res 21: 517–519

    Article  Google Scholar 

  • Heckman JR, Angle JS (1987) Variation between soybean cultivars in vesiculararbuscular mycorrhiza fungi colonization. Agron J 79: 428–430

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70: 2032–2040

    Article  Google Scholar 

  • Hirrel MC, Mehravaran H, Gerdemann JW (1978) Vesicular-arbuscular mycorrhizae in the Chenopodiaceae and Cruciferae: do they occur? Can J Bot 56: 2813–2817

    Article  Google Scholar 

  • Jun DJ, Allen EB (1991) Physiological responses of 6 wheatgrass cultivars to mycorrhizae. J Range Manage 44: 336–341

    Article  Google Scholar 

  • Kandasamy D, Radha NV, Oblisami G (1986) Response of different mulberry varieties to the inoculation of VA-mycorrhizal fungi. Indian J Agric Sci 25: 36–39

    Google Scholar 

  • Kapulink Y, Kushnir U (1991) Growth dependency of wild, primitive and modern cultivated wheat lines on vesicular-arbuscular mycorrhiza fungi. Euphytica 56: 27–36

    Google Scholar 

  • Kesava Rao PS, Tilak KVBR, Arunachalam V (1990) Genetic variation for VA mycorrhiza-dependent phosphate mobilization in groundnut (Arachis hypogaea L.). Plant Soil 122: 137–142

    Article  CAS  Google Scholar 

  • Koide RT, Schreiner RP (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol 43: 557–581

    Article  CAS  Google Scholar 

  • Krishna KR, Shetty KG, Dart PJ, Andrews DJ (1985) Genotype dependent variation in mycorrhizal colonization and response to mycorrhizal colonization and response to inoculation of pearl millet. Plant Soil 86: 113–125

    Article  Google Scholar 

  • Kruckelmann HW (1975) Effects of fertilizers, soils, soil tillage, and plant species on the frequency of Endogone chlamydospores and mycorrhizal infection in arable soils. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 511–525

    Google Scholar 

  • Lackie SM, Bowley SR, Peterson RL (1988) Comparison of colonization among half-sib families of Medicago sativa L. by Glomus versiforme (Daniels and Trappe) Berch. New Phytol 108: 477–482

    Article  Google Scholar 

  • Lambert DH, Cole H Jr, Barker DE (1980) Variation in the response of alfalfa clones and cultivars to mycorrhizae and phosphorus. Crop Sci 20: 615–618

    Article  CAS  Google Scholar 

  • Last FT, Mason PA, Pelham J, Ingleby K (1984) Fruitbody production by sheathing mycorrhizal fungi: effects of “host” genotypes and propagating soils. For Ecol Manage 9: 221–227

    Article  Google Scholar 

  • Lei J, Lapeyrie F, Malajczuk N, Dexheimer J (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius (Pers.) Coker and Couch on roots of Eucalyptus urophylla S.T. Blake in vitro. II. Ultrastructural and biochemical changes at the early stage of mycorrhiza formation. New Phytol 116: 115–122

    Google Scholar 

  • Lundeberg G (1968) The formation of mycorrhizae in different provenances of pine (Pinus silvestris L.). Sven Bot Tidskr 62: 249–255

    Google Scholar 

  • Malajczuk N, Molina R, Trappe JM (1982) Ectomycorrhiza formation in Eucalyptus. I. Pure culture synthesis, host specificity and mycorrhizal compatibility with Pinus radiata. New Phytol 91: 467–482

    Article  Google Scholar 

  • Malajczuk N, Dell B, Bougher NL (1987) Ectomycorrhiza formation in Eucalyptus. III. Superficial ectomycorrhizas initiated by Hysterangium and Cortinarius species. New Phytol 105: 421–428

    Article  Google Scholar 

  • Manske GGB (1989) Genetical analysis of the efficiency of VA mycorrhiza with spring wheat. Agric Ecosystems Environ 29: 273–280

    Article  Google Scholar 

  • Manske GGB (1990) Genetical analysis of the efficiency of VA mycorrhiza with spring wheat. I. Genotypical differences and a reciprocal cross between an efficient and non-efficient variety. In: Bassam EL et al. (ed) Genetical aspects of plant mineral nutrition. Kluwer, Dordrecht, pp 397–405

    Chapter  Google Scholar 

  • Marx DH, Bryan WC (1971) Formation of ectomycorrhizae on half-sib progenies of slash pine in aseptic culture. For Sci 17: 488–492

    Google Scholar 

  • Mason P (1975) The genetics of mycorrhizal associations between Amanita muscaria and Betula verrucosa. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, London, pp 567–574

    Google Scholar 

  • Mason PA, Pelham J (1976) Genetic factors affecting the response of trees to mineral nutrients. In: Cannel! MGR, Last FT (eds) Tree physiology and yield improvement. Academic Press, London, pp 437–448

    Google Scholar 

  • Mercy MA, Shivashankar G, Bagyaraj DJ (1990) Mycorrhizal colonization in cowpea is host dependent and heritable. Plant Soil 121: 292–294

    Article  Google Scholar 

  • Molina R (1981) Ectomycorrhizal specificity in the genus Alnus. Can J Bot 59: 325–334

    Article  Google Scholar 

  • Molina R, Massicotte M, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community — ecological consequences and practical applications. In: Allen MF (ed) Mycorrhizal functioning. Routledge, Chapman & Hall, New York, pp 357–423

    Google Scholar 

  • Morley CD, Mosse B (1976) Abnormal vesicular-arbuscular mycorrhizal infections in white clover induced by lupin. Trans Br Mycol Soc 67: 510–513

    Article  Google Scholar 

  • Navratil S (1986) Seed source variation in mycorrhizae development of white spruce and lodgepole pine in Alberta, Canada. In: Roots in forest soils: biology and symbioses. Program with abstracts 4–8 Aug 1986, University of Victoria, Victoria, British Columbia IUFRO, pp 201–213

    Google Scholar 

  • Ocampo JA, Martin J, Hayman DS (1980) Influence of plant interactions on vesicular-arbuscular mycorrhizal infections. I. Host and non-host plants grown together. New Phytol 84: 27–35

    Article  Google Scholar 

  • Ollivier B, Bertheau Y, Diem HG, Gianinazzi-Pearson V (1983) Influence de la variété de Vigna unguiculata dans l’expression de trois associations endomycorhiziennes à vésicules et arbuscules. Can J Bot 61: 354–358

    Article  Google Scholar 

  • Powell CLI (1982) Phosphate response curves of mycorrhizal and non-mycorrhizal plants. III. Cultivar effects in Lotus pedunculatus Cay. and Trifolium repens L. NZ J Agric Res 25: 217–222

    Article  Google Scholar 

  • Powell CLI, Clark GE, Verberne NJ (1982) Growth response of four onion cultivars to several isolates of VA mycorrhizal fungi. NZ J Agric Res 25: 465–470

    Article  CAS  Google Scholar 

  • Rajapakse S, Miller JC Jr (1987) Intraspecific variability for VA mycorrhizal symbiosis in cowpea (Vigna unguiculata [L.] Walp.) In: Gabelman HW and Loughman BC (eds) Genetics aspects of plant mineral nutrition. Martinus Nijhoff, Dordrecht, pp 523–536

    Google Scholar 

  • Rajapakse S, Miller JC Jr (1988) Relationship between cowpea root systems and mycorrhizal dependency. HortScience 23: 568–570

    Google Scholar 

  • Rosado SCS, Kropp BR, Piché Y (1994a) Genetics of ectomycorrhizal symbiosis. I. Host plant variability and heritability of ectomycorrhizal and root traits. New Phytol 126: 105–110

    Article  Google Scholar 

  • Rosado SCS, Kropp BR, Piché Y (1994b) Genetics of ectomycorrhizal symbiosis. II. Fungal variability and heritability of ectomycorrhizal traits. New Phytol 126: 111–117

    Article  Google Scholar 

  • Schellenbaum L, Gianinazzi S, Gianinazzi-Pearson V (1992) Comparison of acid soluble protein synthesis in roots of endomycorrhizal wild type Pisum sativum and corresponding isogenic mutants. J Plant Physiol 141: 2–6

    Article  Google Scholar 

  • Schiefelbein JW, Benfey PW (1991) The development of plant roots: new approaches to underground problems. Plant Cell 3: 1147–1154

    PubMed  CAS  Google Scholar 

  • Schmidt SK, Reeves RB (1984) Effect of the non-mycorrhizal pioneer plant Salsola kali L. (Chenopodiaceae) on vesicular-arbuscular mycorrhizal (VAM) fungi. Am J Bot 71: 1035–1039

    Article  Google Scholar 

  • Schwab SM, Leonard RT, Merge JA (1984) Quantitative and qualitative comparison of root exudates of mycorrhizal and nonmycorrhizal plant species. Can J Bot 62: 1227–1231

    Article  Google Scholar 

  • Smith FA, Smith SE (1981) Mycorrhizal infection and growth of Trifolium subterraneum: use of sterilized soil as a control treatment. New Phytol 88: 299–309

    Article  CAS  Google Scholar 

  • Smith SE, Robson AD, Abbott LK (1992) The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. Plant Soil 146: 169–179

    Article  CAS  Google Scholar 

  • Somerville C (1989) Arabidopsis blooms. Plant Cell 1: 1131–1135

    Google Scholar 

  • Stöppler H, Kölsch E, Vogtmann H (1990) Vesicular-arbuscular mycorrhiza in varieties of winter wheat in a low external input system. Biol Agric and Hortic 7: 191–199

    Article  Google Scholar 

  • Tester M, Smith SE, Smith FA (1987) The phenomenon of “nonmycorrhizal” plants. Can J Bot 65: 419–431

    Article  Google Scholar 

  • Thomas GV, Ghai SK (1987) Genotype dependent variation in vesicular-arbuscular mycorrhizal colonization of coconut seedlings. Proc Indian Acad Sci 97: 289–294

    Google Scholar 

  • Thomson J, Matthes-Sears U, Peterson RL (1990) Effects of seed provenance and mycorrhizal fungi on early seedling growth in Picea mariana. Can J For Res 20: 1739–1745

    Article  Google Scholar 

  • Tommerup IC (1984) Development of infection by a vesicular-arbuscular mycorrhizal fungus in Brassica napus L. and Trifolium subterraneum L. New Phytol 98: 487–495

    Article  Google Scholar 

  • Tonkin CM, Malajczuk N, McComb JA (1989) Ectomycorrhizal formation by micropropagated clones of Eucalyptus marginata inoculated with isolates of Pisolithus tinctorius. New Phytol 111: 209–214

    Article  Google Scholar 

  • Toth R, Page T, Castleberry R (1984) Differences in mycorrhizal colonization of maize selections for high and low ear leaf phosphorus. Crop Sci 24: 994–996

    Article  Google Scholar 

  • Toth R, Toth D, Starke D, Smith DR (1990) Vesicular-arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Can J Bot 68: 1039–1044

    Article  Google Scholar 

  • Traquair JA, Berch SM (1988) Colonization of peach root stocks by indigenous vesicular-arbuscular mycorrhizal (VAM) fungi. Can J Plant Sci 68: 893–898

    Article  Google Scholar 

  • Trinick MJ (1977) Vesicular-arbuscular infection and soil phosphorus utilization in Lupinus spp. New Phytol 78: 297–304

    Article  CAS  Google Scholar 

  • Verma DPS, Brisson N (eds) (1987) Molecular genetics of plant-microbe interactions. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Vierheilig H, Ocampo JA (1990) Role of root extract and volatile substances of non-host plants on vesicular-arbuscular mycorrhizal spore germination. Symbiosis 9: 199–202

    Google Scholar 

  • Vierheilig H, Ocampo JA (1991a) Receptivity of various wheat cultivars to infection by VA-mycorrhizal fungi as influenced by inoculum potential and the relation of VAM-effectiveness to succinic dehydrogenase activity of the mycelium in the roots. Plant Soil 133: 291–296

    Article  CAS  Google Scholar 

  • Vierheilig H, Ocampo JA (1991b) Susceptibility and effectiveness of vesiculararbuscular mycorrhizae in wheat cultivars under different growing conditions. Biol Fertil Soils 11: 290–294

    Article  Google Scholar 

  • Wright E, Ching KK (1962) Effect of seed source on mycorrhizal formation on Douglas fir seedlings. Northwest Sci 36: 1–6

    Google Scholar 

  • Wyss P, Mellor RB, Wiemken A (1990) Vesicular-arbuscular mycorrhizas of wild-type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis-specific polypeptides (mycorrhizins), immunologically cross-reactive with nodulins. Planta 182: 22–26

    Article  CAS  Google Scholar 

  • Young JL, David EA, Rose SL (1985) Endomycorrhizal fungi in breeder wheats and triticale cultivars field-grown on fertile soil. Agron J 77: 219–224

    Article  Google Scholar 

  • Zhu H, Navratil S (1987) The effects of seed source and fungus on growth and ectomycorrhizal formation of tamarack seedlings. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Practical applications and research priorities. Proc 7th North American Conf on Mycorrhizae, 3–8 May, 1987, Gainesville, FL. Institute of Food and Agricultural Sciences, University of Florida, Gainesville

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peterson, R.L., Bradbury, S.M. (1999). Use of Plant Mutants, Intraspecific Variants, and Non-Hosts in Studying Mycorrhiza Formation and Function. In: Varma, A., Hock, B. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03779-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03779-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03781-2

  • Online ISBN: 978-3-662-03779-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics