Skip to main content

Mycorrhiza — The State of the Art

  • Chapter
Mycorrhiza

Abstract

This chapter provides a view of the state of the art, (and of the science!) of mycorrhizal research. It recognises the central part played by structural and nutritional considerations in past and present work on the subject, but emphasises an emerging trend in which the symbiosis is placed in a broader context. This trend is establishing the multifunctional nature of mycorrhizal associations and in so doing is enabling the identification of roles likely to be of significance in both evolutionary and ecosystem contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agerer R (1987–1993) Colour atlas of ectomycorrhizae. Einhorn, Schwäbisch Gmünd

    Google Scholar 

  • Alexander I, Norani A, Lee SS (1992) The role of mycorrhizas in the regeneration of some Malaysian forest trees. Philos Trans R Soc Lond [Biol] 335: 379–388

    Google Scholar 

  • Allen EB, Allen MF (1986) Water relations of xeric grasses in the field: interactions of mycorrhizas and competition. New Phytol 104: 559–571

    Google Scholar 

  • Allen MF (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (HBK) Lag ex Steud. New Phytol 91: 191–196

    Google Scholar 

  • Allen MF, Smith WK, Moore TS, Christensen M (1981) Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis HBK Lag ex Steud. New Phytol 88: 683–693

    Google Scholar 

  • Andersson S, Ek H, Söderström B (1997) Effects of liming on the uptake of organic and inorganic nitrogen by mycorrhizal (Paxillus involutus) and non-mycorrhizal Pinus sylvestris plants. New Phytol 134: 762–772

    Google Scholar 

  • Arnebrant K (1994) Nitrogen amendments reduce the growth of extramatrical ectomycorrhizal mycelium. Mycorrhiza 5: 7–15

    CAS  Google Scholar 

  • Arnolds E (1991) Decline of ectomycorrhizal fungi in Europe. Agric Ecosyst Environ 35: 209–244

    Google Scholar 

  • Augé RM, Schekel KA, Wample RL (1986) Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to P nutrition. New Phytol 103: 107–116

    Google Scholar 

  • Augé RM, Duan X, Ebel RC, Stodola AJW (1994) Nonhydraulic signalling of soil drying in mycorrhizal maize. Planta 193: 74–82

    Google Scholar 

  • Baar J, De Vries FW (1995) Effects of manipulation of litter and humus layers on ectomycorrhizal colonisation potential in Scots pine stands of different age. Mycorrhiza 5: 267–272

    Google Scholar 

  • Bââth E, Hayman DS (1983) Plant growth responses to vesicular-arbuscular mycorrhiza. XIV. Interactions with Verticillium wilt on tomato plants. New Phytol 95: 419–426

    Google Scholar 

  • Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 373–389

    Google Scholar 

  • Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. The foraging behaviour of ectomycorrhizal mycelium and the translocation of nutrients from exploited organic matter. New Phytol 130: 40–409

    Google Scholar 

  • Bending GD, Read DJ (1996a) Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28: 1595–1602

    CAS  Google Scholar 

  • Bending GD, Read DJ (1996b) Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28: 1603–1612

    CAS  Google Scholar 

  • Bonfante P, Perotto S (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130: 3–21

    Google Scholar 

  • Brown MS, Bethlenfalvay GJ (1988) The Glycine, Glomus, Rhizobium symbiosis. VII. Photosynthetic nutrient use efficiency in nodulated, mycorrhizal soybeans. Plant Physiol 86: 1292–1297

    Google Scholar 

  • Bryla DR, Koide RT (1990) Role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants. II. Eight wild accessions and two cultivars of Lycopersicon esculentum Mill. Oecologia 84: 82–92

    Google Scholar 

  • Caron M, Fortin JA, Richard C (1986) Effect of Glomus intraradices on infection by f Fusarium oxysporum. f. sp. radicis-lycopersici in tomatoes over 12-week period. Can J Bot 64: 552–556

    Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130: 59–265

    Google Scholar 

  • Colpaert JV, van Assche JA (1987) Heavy metal tolerance in some ectomycorrhizal fungi. Funct Ecol 1: 415–421

    Google Scholar 

  • Conjeaud C, Scheromm P, Mousain D (1996) Effects of phosphorus fertilisation and ectomycorrhizal infection on the carbon balance in mkaritime pine seedlings (Pinus pinaster Soland. in Ait.). New Phytol 133: 345–351

    Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185: 223–232

    CAS  Google Scholar 

  • Cullings KW, Szaro TM, Bruns TD (1996) Evolution of extreme specialisation with a lineage of ectomycorrhizal parasites. Nature 379: 63–66

    CAS  Google Scholar 

  • Dahlberg A (1995) Somatic incompatibility in ectomycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg, New York, pp 115–136

    Google Scholar 

  • Dahlberg A, Stenlid J (1994) Size, distribution and biomass of genets in populations of Suillus bovinus revealed by somatic incompatibility. New Phytol 128: 225–234

    Google Scholar 

  • Dahlberg A, Stenlid J (1995) Spatiotemporal patterns in ectomycorrhizal populations. Can J Bot 73 Suppl 1: S1222 — S1230

    Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42: 55–76

    CAS  Google Scholar 

  • Davis RM, Menge JA (1980) Influence of Glomus fasciculatus and soil phosphorus on Phytophthora root rot of citrus. Phytopathology 70: 447–452

    CAS  Google Scholar 

  • De Bary A (1887) Comparative morphology and biology of the Fungi, Mycetozoa and Bacteria [English translation of 1884 edition]. Clarendon Press, Oxford

    Google Scholar 

  • Debaud JC, Marmeisse R, Gay F (1995) Intra specific genetic variation in ectomycorrhizal fungi. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology Springer, Berlin Heidelberg, New York, pp 79–113

    Google Scholar 

  • Dehne HW (1982) Interactions between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72: 1115–1119

    Google Scholar 

  • Dehne HW, Schönbeck F (1979) Investigations on the influence of endotrophic mycorrhiza on plant diseases. II. Phenol metabolism and lignification. Phytopath Z 95: 210–216

    Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1988a) Interaction between the ectomycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporum. Can J Bot 66: 558–562

    Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1988b) Pine root exudate stimulates antibiotic synthesis by the ectomycorrhizal fungus Paxillus involutus. New Phytol 108: 470–476

    Google Scholar 

  • Duddridge JA, Read DJ (1982) An ultrastructural analysis of the development of mycorrhizal in Monotropa hypopitys L. New Phytol 92: 203–214

    Google Scholar 

  • Dugassa GD, von Alten A, Schönbeck F (1996) Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens. Plant Soil 185: 173–182

    CAS  Google Scholar 

  • Ebel RC, Duan X, Still DW, Augé RM (1997) Xylem sap abscisic acid concentration and stomatal conductance of mycorrhizal Vigna unguiculata in drying soil. New Phytol 135: 755–762

    CAS  Google Scholar 

  • Egger KN (1995) Molecular analysis of ectomycorrhizal fungal communities. Can J Bot 73: 1415–1422

    Google Scholar 

  • Eissenstat DM, Graham JH, Syvertsen JP, Drouillard DL (1993) Carbon economy of sour orange in relation to mycorrhizal colonisation and phosphorus status. Ann Bot 71: 1–10

    CAS  Google Scholar 

  • Ek H, Sjögren M, Arnebrant K, Söderström B (1994) Extramatrical mycelial growth, biomass allocation and nitrogen uptake in ectomycorrhizal systems in response to collembolan grazing. Appl Soil Ecol 1: 155–169

    Google Scholar 

  • El Karkouri K, Cleyet-Marel J-C, Mousain D (1996) Isozyme variation and somatic incompatibility in populations of the ectomycorrhizal fungus Suillus collinitus. New Phytol 134: 143–154

    CAS  Google Scholar 

  • Entry JA, Rose CL, Cromack K Jr (1991) Litter decomposition and nutrient release in ectomycorrhizal mat soils of a Douglas fir ecosystem. Soil Biol Biochem 23: 285–290

    CAS  Google Scholar 

  • Erland S (1995) Abundance of Tylospora fibrillosa ectomycorrhizas in a South Swedish spruce forest measured by RFLP analysis of the PCR-amplified r-DNA ITS region. Mycol Res 99: 1425–1428

    CAS  Google Scholar 

  • Erland S, Söderström B (1990) Effects of liming on ectomycorrhizal fungi infecting Pinus sylvestris. I. Mycorrhizal infection in limed humus in the laboratory, and isolation of fungi from mycorrhizal roots. New Phytol 115: 675–682

    Google Scholar 

  • Erland S, Henrion B, Martin F, Glover LA, Alexander IJ (1994) Identification of the ectomycorrhizal basidiomycete Tylospora fibrillosa Dong by RFLP analysis of the PCR-amplified ITS and IGS region of ribosomal DNA. New Phytol 126: 525–532

    CAS  Google Scholar 

  • Fay P, Mitchell DT, Osborne BA (1996) Photosynthesis and nutrient-use efficiency of barley in response to low arbuscular mycorrhizal colonisation and addition of phosphorus. New Phytol 132: 425–433

    CAS  Google Scholar 

  • Fieschi M, Alloatti G, Sacco S, Berta G (1992) Membrane potential hyperpolarisation in VA mycorrhiza of Allium porum L: a non-nutritional long-distance effect of the fungus. Protoplasma 168: 136–140

    Google Scholar 

  • Finlay RD, Read DJ (1986) The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytol 103: 143–156

    Google Scholar 

  • Finlay RD, Söderström B (1989) Mycorrhizal mycelia and their role in soil and plant communities. In: Clarholm M, Bergström L (eds) Development in plant and soil sciences, vol 39: Ecology of arable land: perspectives and challenges. Kluwer, Dordrecht, pp 139–148

    Google Scholar 

  • Finlay RD, Söderström B (1992) Mycorrhiza and carbon flow to the soil. In: Allen M (ed) Mycorrhiza functioning. Chapman and Hall, London, pp 134–160

    Google Scholar 

  • Fisher RA (1958) The genetical theory of natural selection. Dover Press, New York

    Google Scholar 

  • Fitter AH (1985) Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phytol 99: 257–265

    Google Scholar 

  • Fleming LV (1984) Succession of mycorrhizal fungi on birch: infection of seedling planted around mature trees. Plant Soil 71: 263–267

    Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307: 53–56

    CAS  Google Scholar 

  • Francis R, Read DJ (1994) The contribution of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159: 11–25

    Google Scholar 

  • Francis R, Read DJ (1995) Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can J Bot 73 Suppl 1: 1301–1309

    Google Scholar 

  • Garrett SD (1970) Pathogenic root-infecting fungi. Cambridge University Press, Cambridge

    Google Scholar 

  • Gange AC, Bower E (1996) Interactions between insects and mycorrhizal fungi. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, Oxford

    Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128: 197–210

    Google Scholar 

  • Gardes M, Bruns T (1993) ITS primers with enhanced specificity for basidiomycetes — application to the identification of mycorrhizae and rusts. Mol Ecol 2: 113–118

    PubMed  CAS  Google Scholar 

  • Gardes M, Bruns T (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above-and below-ground views. Can J Bot 74: 1572–1583

    Google Scholar 

  • Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S (1996a) Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133: 45–57

    Google Scholar 

  • Gianinazzi-Perason V, Gollotte A, Cordier C, Gianinazzi S (1996b) Root defence responses in relation to cell and tissue invasion by symbiotic microorganisms: cytological investigations. In: Nicole M, Gianinazzi-Pearson V (eds) Histology, ultrastructure and molecular cytology of plant-microorganism interactions. Kluwer, Dordrecht, pp 177–191

    Google Scholar 

  • Gibson F, Deacon JW (1988) Experimental study of establishment of ectomycorrhizas in different regions of birch root systems. Trans Br Mycol Soc 91: 239–251

    Google Scholar 

  • Gibson F, Deacon JW (1990) Establishment of ectomycorrhizas in asceptic culture: effects of glucose, nitrogen and phosphorus in relation to successions. Mycol Res 94: 166–172

    Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol 125: 587–594

    Google Scholar 

  • Giovannetti M, Sbrana C, Citernesi AS, Avio L (1996) Analysis of factors involved in fungal recognition responses to host-derived signals by arbuscular. New Phytol 133: 65–72

    Google Scholar 

  • Goodman DM, Durall DM, Trofymow JA, Berch SM (eds) (1996) Concise descriptions of North American ectomycorrhizae. Mycologue Publications and Canadian Forest Service, Victoria

    Google Scholar 

  • Graham JH, Menge JA (1982) Influence of vesicular-arbuscular mycorrhizae and soil phosphorus on take-all disease of wheat. Phytopathology 72: 95–98

    Google Scholar 

  • Griffiths RP, Caldwell BA (1992) Mycorrhizal mat communities in forest soils. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizal mat communities in forest soils. CAB International, Wallingford, pp 98–105

    Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328: 420–422

    Google Scholar 

  • Grubb PJ (1977) The maintenance of species richness in plant communities: the importance of the regeneration niche. Biol Rev 52: 107–145

    Google Scholar 

  • Guillemin JP, Gianinazzi S, Gianinazzi-Pearson V, Marchal J (1994) Contribution of arbuscular mycorrhizas to biological protection of micropropagated pineapple [Ananas comosus (L.) Merr] against P. cinnamomi rands. Agric Sci Finland 3: 241–251

    Google Scholar 

  • Hacskaylo E, Vozzo JA (1971) Inoculation of Pinus caribaea with ectomycorrhizal fungi in Puerto Rico. For Sci 17: 239–241

    Google Scholar 

  • Hadley G, Williamson B (1971) Analysis of post-infection growth stimulus in orchid mycorrhiza. New Phytol 70: 445–455

    Google Scholar 

  • Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105: 1–102

    Google Scholar 

  • Harrison MJ, Dixon RA (1994) Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 6: 9–20

    CAS  Google Scholar 

  • Hatch AB (1937) The physical basis of mycotrophy in the genus Pinus. Black Rock For Bull 6: 168

    Google Scholar 

  • Herold A (1980) Regulation of photosynthesis by sink activity — the missing link. New Phytol 86: 131–144

    CAS  Google Scholar 

  • Ineichen K, Wiemken V, Wiemken A (1995) Shoots, roots and ectomycorrhiza formation of pine seedlings at elevated atmospheric carbon dioxide. Plant Cell Environ 18: 703–707

    Google Scholar 

  • Jacobek JL, Smith JA, Lindgren PB (1993) Suppression of bean responses by Pseudomonas syringae. Plant Cell Environ 5: 57–63

    Google Scholar 

  • Jacobson KM, Miller OK, Turner BJ (1993) Randomly amplified polymorphic DNA markers are superior to somatic incompatibility tests for discriminating genotypes in natural populations of the ectomycorrhizal fungus Suillus granulatus. Proc Natl Acad Sci USA 90: 9159–9163

    PubMed  CAS  Google Scholar 

  • Jalali BL, Jalali I (1991) Mycorrhiza in plant disease control. In: Arora DK, Rai B, Mukherjee KG, Knudsen D (eds) Handbook of applied mycology, vol 1: Soil and plants. Dekker, New York, pp 131–154

    Google Scholar 

  • Jensen A (1983) The effect of indigenous vesicular-arbuscular mycorrhizal fungi on nutrient uptake and growth of barley in two Danish soils. Plant Soil 70: 155–163

    CAS  Google Scholar 

  • Johnson CR (1984) Phosphorus nutrition on mycorrhizal colonisation, photosynthesis, growth and nutrient composition of Citrus aurantium. Plant Soil 80: 35–42

    CAS  Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1991) Fluxes of carbon and phosphorus between symbikonts in willow ectomycorrhizas and their changes with time. New Phytol 119: 99–106

    CAS  Google Scholar 

  • Kapulnik Y, Volpin H, Itzhaki H, Ganon D, Elad Y, Chet I, Okon Y (1996) Suppression of defence response in mycorrhizal alfalfa and tobacco roots. New Phytol 133: 59–64

    Google Scholar 

  • Karén O, Högberg N, Dahlberg A, Jonsson L, Nylund J-E (1996) Inter-and intraspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in Fennoscandia as detected by endonuclease analysis. New Phytol 136: 313–325

    Google Scholar 

  • Kaye JW, Pfleger FL, Stewart EL (1984) Interaction of Glomus fasciculatum and Pythium ultimum on greenhouse-grown poinsettia. Can J Bot: 1575–1579

    Google Scholar 

  • Kiernan JM, Hendrix JW, Maronek DM (1983) Fertilizer-induced pathogenicity of mycorrhizal fungi to sweetgum seedlings. Soil Biol Biochem 15: 257–262

    Google Scholar 

  • Koide RT (1985) The nature of growth depressions in sunflower caused by vesiculararbuscular mycorrhizal infection. New Phytol 99: 449–462

    Google Scholar 

  • Koide RT, Lu X (1992) Mycorrhizal infection of wild oats: parental effects on offspring nutrient dynamics, growth and reproduction. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 55–58

    Google Scholar 

  • Koide RT, Lu X (1995) On the cause of offspring superiority conferred by mycorrhizal infection of Abutilon theophrasti. New Phytol 131: 435–441

    Google Scholar 

  • Koide RT, Li M, Lewis J, Irby C (1988) Role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants. I. Wild vs. cultivated oats. Oecologia 77: 537–542

    Google Scholar 

  • Kope HH, Tsantrizos YS, Fortin JA, Ogilvie KK (1991) p-Hydroxybenzoylformic acid and (R)-(—) p-hydroxymandelic acid, two antifungal compounds isolated from the liquid culture of the ectomycorrhizal fungus Pisolithus arhizus. Can J Microbiol 37: 258–264

    Google Scholar 

  • Lamb CJ, Lawton MA, Dron M, Dixon RA (1989) Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56: 215–224

    PubMed  CAS  Google Scholar 

  • Lambais MR, Mehdy MC (1993) Suppression of endochitinase, b-1,3-endoglucanase, and chalcone isomerase expression in bean vesicular-arbuscular mycorrhizal roots under different soils phosphate conditions. Mol Plant Microbe Interact 6: 75–83

    CAS  Google Scholar 

  • Lambais MR, Mehdy MC (1995) Differential expression of defense-related genes in arbuscular mycorrhiza. Can J Bot 73: 533–540

    Google Scholar 

  • Last FT, Mason PA, Wilson J, Deacon JW (1983) Fine roots and sheathing mycorrhizas: their formation, function and dynamics. Plant Soil 71: 9–21

    Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic “saprophytic” plants. New Phytol 127: 171–216

    Google Scholar 

  • Lee SS, Alexander IJ (1995) The dynamics of ectomycorrhizal infection of Shorea leprosula seedlings in Malaysian rain forest. New Phytol 131: 297–306

    Google Scholar 

  • Levy Y, Krikun J (1980) Effect of vesicular-arbuscular mycorrhiza on Citrus jambhiri water relations. New Phytol 85: 25–31

    Google Scholar 

  • Lewin RA (1982) Symbiosis and parasitism — definitions and evaluations. Bioscience 32: 254–259

    Google Scholar 

  • Lewis DH (1985) Symbiosis and mutualism: crisp concepts and soggy semantics. In: Boucher DH (ed) The biology of mutualism ecology and evolution. Croom Helm, London, pp 29–39

    Google Scholar 

  • Lewis DH, Harley JL (1965) Carbohydrate physiology of mycorrhizal roots of beech. III. Movement of sugars between host and fungus. New Phytol 64: 256–269

    Google Scholar 

  • Linderman RC (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RC (eds) Mycorrhizae and plant health. American Phytopathological Society Press, St Paul, pp 1–27

    Google Scholar 

  • Liu RJ (1995) Effect of vesicular-arbuscular mycorrhizal fungi on Verticilium wilt of cotton. Mycorrhiza 5: 293–297

    Google Scholar 

  • Martin F, Lapeyrie F, Tagu D (1997) Altered gene expression during ectomycorrhiza development. In: Lemke P, Caroll G (eds) The mycota, vol. 5a. Springer, Berlin Heidelberg, New York, pp 223–242

    Google Scholar 

  • Marx DH (1973) Mycorrhizae and feeder root diseases. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae: their ecology and physiology. Academic Press, New York, pp 351–382

    Google Scholar 

  • Marx DH (1975) Mycorrhiza and establishment of trees on strip-mined land. Ohio J Sci 75: 288–297

    Google Scholar 

  • Marx DH, Maul SB, Cordell CE (1989) Application of specific ectomycorrhizal fungi in world forestry. Frontiers in industrial mycology. Chapman and Hall, New York, pp 78–98

    Google Scholar 

  • Mason PA, Wilson J, Last FT (1983) The concept of succession in relation to the spread of sheathing mycorrhizal fungi in inoculated tree seedlings growing in unsterile soils. Plant Soil 71: 247–256

    Google Scholar 

  • Melin E, Nilsson H (1950) Transfer of radioactive phosphorus to pine seedlings by means of mycorrhizal hyphae. Physiol Plant 3: 88–92

    Google Scholar 

  • Melin E, Nilsson H (1953) Transfer of labelled nitrogen from glutamic acid to pine seedlings through the mycelium of Boletus variegatus ( SW) Fr. Nature 171: 434

    Google Scholar 

  • Merryweather J, Fitter A (1995a) Phosphorus and carbon budgets: mycorrhizal contribution in the obligately mycorrhizal Hyacinthoides non-scripta (L.) Chouard ex Rothm. under natural conditions. New Phytol 129: 619–627

    Google Scholar 

  • Merryweather J, Fitter A (1995b) Arbuscular mycorrhiza and phosphorus as controlling factors in the life history of the obligately mycorrhizal Hyacinthoides non-scripta ( L.) Chouard ex Rothm. New Phytol 129: 629–636

    Google Scholar 

  • Merryweather J, Fitter A (1996) Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytol 132: 307–311

    CAS  Google Scholar 

  • Mikola P (1973) Application of mycorrhizal symbiosis in forestry practice. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae. Academic Press, London, pp 383–411

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community ecological consequences and practical application. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, London, pp 357–423

    Google Scholar 

  • Moore PD (1987) The distribution of mycorrhiza throughout the British flora. Nature 327: 100

    Google Scholar 

  • Morandi D, Bailey JA, Gianinazzi-PearsonV (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol Plant Pathol 24: 357–364

    CAS  Google Scholar 

  • Münzenberger B, Otter T, Wüstrich D, Polle A (1997) Peroxidase and laccase activities in mycorrhizal and non-mycorrhizal fine roots of norway spruce [Picea abies (L.) Karst.] and larch (Larix decidua Mill). Can J Bot 75: 932–938

    Google Scholar 

  • Newman EI (1969) Resistance to water flow in soil and plants. J Appl Ecol 6: 1–12

    Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106: 745–751

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1994) Root pathogenic and arbuscular mycorrhizal fungi determine fecundity of asymptomatic plants in the field. J Ecol 82: 805–814

    Google Scholar 

  • Newsham KK, Fitter AH, Merryweather JW (1995) Multifunctionality and biodiversity in arbuscular mycorrhizas. Tree 10: 407–411

    PubMed  CAS  Google Scholar 

  • Nurmiaho-Lassila EL, Timonen S, Haahtela K, Sen R (1997) Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can J Microbiol 43: 1017–1035

    CAS  Google Scholar 

  • Nylund J-E, Wallander H (1989) Effects of ectomycorrhiza on host growth and carbon balance in a semi-hydroponic cultivation system. New Phytol 112: 389–398

    Google Scholar 

  • Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal citrus at high phosphorus supply. Analysis of carbon costs. Plant Physiol 101: 1063–1071

    Google Scholar 

  • Read DJ (1986) Non-nutritional effects of mycorrhizal infection. In: GianinazziPearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhiza. INRA, Paris, pp 169–176

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391

    Google Scholar 

  • Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) The mycorrhizal mycelium. Chapman and Hall, London, pp 102–133

    Google Scholar 

  • Read DJ (1996) The structure and function of the ericoid mycorrhizal root. Ann Bot 77: 365–376

    CAS  Google Scholar 

  • Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres P, Boddy L (eds) Water, fungi and plants. Cambridge University Press, Cambridge, pp 287–303

    Google Scholar 

  • Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 193–217

    Google Scholar 

  • Reich PB, Schoettle AW, Stroo HF, Troiano J, Amundsen RG (1985) Effects of O32, SO, and acid rain on mycorrhizal infection in northern red oak seedlings. J Bot 63: 2049–2055

    Google Scholar 

  • Rosendahl CN, Rosendahl S (1990) The role of vesicular-arbuscular mycorrhiza in controlling damping-off and disease reduction in cucumber caused by Pythium ultimum. Symbiosis 9: 363–366

    Google Scholar 

  • Rousseau JVD, Reid CPP (1990) Effects of phosphorus and ectomycorrhizas on the carbon balance of loblolly pine seedlings. For Sci 36: 101–112

    Google Scholar 

  • Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol 128: 639–644

    Google Scholar 

  • Samra A, Dumas-Gaudot E, Gianinazzi S (1997) Detection of symbiosis-related polypeptides during the early stages of the establishment of arbuscular mycorrhiza between Glomus mosseae and Pisum sativum roots. New Phytol 135: 711–722

    CAS  Google Scholar 

  • Schaeffer C, Wallenda T, Guttenberger M, Hampp R (1995) Acid invertase in mycorrhizal and non-mycorrhizal roots of Norway spruce [Picea abies ( L.) Karst.] seedlings. New Phytol 129: 417–424

    Google Scholar 

  • Schaffer SR, Grand LF, Bruck RI, Heagle AS (1985) Formation of ectomycorrhizae on Pinus taeda seedlings exposed to simulated acid rain. Can J For Res 15: 66–71

    Google Scholar 

  • Sen R (1990a) Intraspecific variation in two species of Suillus from Scots pine (Pinus sylvestris L.) forests based on somatic incompatibility and isozyme analyses. New Phytol 114: 607–616

    CAS  Google Scholar 

  • Sen R (1990b) Isozymic identification of individual ectomycorrhizas synthesized between Scots pine (Pinus sylvestris L.) and isolates of two species of Suillus. New Phytol 114: 617–626

    CAS  Google Scholar 

  • Setälä HE (1995) Growth of birch and pine seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi. Ecology 76: 1844–1851

    Google Scholar 

  • Simard SW, Perry DA, Smith JE, Molina R (1997a) Effects of soil trenching on occurrence of ectomycorrhizas on Pseudotsuga menziesii seedlings grown in mature forests of Betula papyrifera and Pseudotsuga menziesii. New Phytol 136: 327–340

    Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997b) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388: 579–582

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114: 1–38

    CAS  Google Scholar 

  • Snellgrove RC, Splittstoesser WE, Stribley DP, Tinker PB (1982) The distribution of carbon and the demand of the fungal symbiont in leek plants with vesiculararbuscular mycorrhizas. New Phytol 92: 75–87

    Google Scholar 

  • Söderström B, Read DJ (1987) Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilised soil. Soil Biol Biochem 19: 231–236

    Google Scholar 

  • Spanu P, Bonfante-Fasolo P (1988) Cell-wall bound peroxidase activity in roots of mycorrhizal Allium cepa. New Phytol 109: 119–124

    CAS  Google Scholar 

  • Spanu P, Boller T, Ludwig A, Wiemken A, Faccio A, Bonfante P (1989) Chitinase in roots of mycorrhizal Allium porrum: regulation and localization. Planta 177: 447–455

    CAS  Google Scholar 

  • Starr MP (1975) A generalized scheme for classifying organismic associations. Symp Soc Exp Biol 29: 1–20

    PubMed  Google Scholar 

  • Stone EL (1950) Some effects of mycorrhizae on the phosphorus nutrition of Monterey pine seedlings. Proc Soil Sci Soc Am 14: 340–345

    CAS  Google Scholar 

  • Syvertsen JP, Graham JH (1990) Influence of vesicular arbuscular mycorrhizae and leaf age on net gas exchange of Citrus leaves. Plant Physiol 94: 1424–1428

    PubMed  CAS  Google Scholar 

  • Tagu D, Martin F (1996) Molecular analysis of cell wall proteins expressed during the early steps of ectomycorrhiza development. New Phytol 133: 73–85

    CAS  Google Scholar 

  • Taylor AFS, Alexander IJ (1989) Demography and population dynamics of ectomycorrhizas of Sitka spruce fertilised with N. Agric. Ecosyst Environ 28: 493–496

    Google Scholar 

  • Taylor DL, Bruns TD (1997) Indepentent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc Natl Acad Sci USA 94: 4510–4515

    PubMed  CAS  Google Scholar 

  • Timonen S, Tammi H, Sen R (1997) Characterization of the host genotype and fungal diversity in Scots pine ectomycorrhiza from natural humus microcosms using isozyme and PCR-RFLT analyses. New Phytol 135: 313–323

    CAS  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from and evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, pp 5–25

    Google Scholar 

  • Trappe JM (1996) What is a mycorrhiza? Proceedings of the 4th European Symposium on Mycorrhizae, Granada, Spain. EC Report EUR 16728, pp 3–9

    Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185: 199–209

    CAS  Google Scholar 

  • Vierheilig H, Alt M, Neuhaus JM, Boller T, Wiemken A (1993) Colonization of transgenic Nicotiana silvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Mol Plant Microbe Interact 6: 261–264

    CAS  Google Scholar 

  • Vierheilig H, Alt M, Mohr U, Boller T, Wiemken A (1994) Ethylene biosynthesis and activities of chitinase and ß-1,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. J Plant Physiol 143: 337–343

    CAS  Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 61: 3031–3034

    PubMed  CAS  Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129: 389–401

    Google Scholar 

  • Watkins NK, Fitter AH, Graves JD, Robinson D (1996) Quantification using stable carbon isotopes of carbon transfer between C3 and C4 plants linked by a common mycorrhizxal network. Soil Biol Biochem 28: 471–477

    CAS  Google Scholar 

  • West HM, Fitter AH, Watkinson AR (1993) Response of Vulpia ciliata ssp. ambigua to removeal of mycorrhizal infection and to phosphate application under field conditions. J Ecol 81: 351–358

    Google Scholar 

  • Wong KKY, Fortin JA (1990) Root colonisation and intraspecific mycobiont variation in ectomycorrhiza. Symbiosis 8: 197–231

    Google Scholar 

  • Wright DP, Scholes JD, Read DJ (1998) Effects of VA mycorrhizal colonisation on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21: 209–216

    Google Scholar 

  • Zelmer CD, Currah RS (1995) Evidence for a fungal liaison between Corralorhiza trifida (Orchidaceae) and Pinus contorta ( Pinaceae ). Can J Bot 73: 862–866

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Read, D.J. (1999). Mycorrhiza — The State of the Art. In: Varma, A., Hock, B. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03779-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03779-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03781-2

  • Online ISBN: 978-3-662-03779-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics