Skip to main content

Basic AO/ASIF Technique: Aims and Principles

  • Chapter
AO/ASIF Instruments and Implants

Abstract

The human skeleton gives the body rigidity, allows for locomotion and protects the organs. The figure shows that intact cortical bone is very strong. A segment of the tibia is able to carry a small car, and a screw inserted into the cortex of the thigh bone (femur) will take the load of three persons. Intact healthy bone resists appreciable amounts of load without failure, for example, when a parachute jumper lands. When bone is mechanically overloaded, for example by work or a traffic or sports accident, it fractures. Prior to the accident the bone was able to carry load without giving way. After the accident the fractured bone bends, buckles, shortens or twists when even a small load is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi M, Regazzoni P (eds) Bone transplantation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Allgöwer M (1978) Cinderella of surgery — fractures? Surg Clin North Am 58: 1071–1093

    PubMed  Google Scholar 

  • Allgöwer M, Ehrsam R, Ganz R, Matter P, Perren SM (1969) Clinical experience with a new compression plate “DCP”. Acta Orthop Scand [Suppl] 125: 45–63

    Google Scholar 

  • Cordey J, Schwyzer HK, Brun S, Matter P (1985) Bone loss following plate fixation of fractures? Helv Chir Acta 52: 181–184

    PubMed  CAS  Google Scholar 

  • Frigg R (1992) The development of the pinless external fixator: from the idea to the implant. Injury 23 [Suppl 3]: 3–8

    Article  Google Scholar 

  • Hutzschenreuter P, Perren SM, Steinemann S, Geret B, Klebl M (1969) Some effects of rigidity of internal fixation on the healing pattern of osteotomies. Injury 1: 77–81

    Article  Google Scholar 

  • Klein MPM, Rahn BA, Frigg R, Kessler S, Perren SM (1990) Reaming versus non-reaming in medullary nailing: interference with cortical circulation of the canine tibua. arch Orthop trauma Surg 109 /6: 314–316

    CAS  Google Scholar 

  • Küntscher G (1970) Das Kallus-Problem. Enke, Stuttgart.

    Google Scholar 

  • Lucas-Championnière J (1907) Les dangers de l’immogilisation des membres — fagilité des os— altération de la nutrition du membre — conclusions pratiques. Rev Méd Chir Pratique 78: 81–87

    Google Scholar 

  • Mast J, Jakob R, Ganz R (1989) Planning and reduction techniques in fracture surgery. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Matter P, Brennwald J, Perren SM (1974) Biologische Reaktion des Knochens auf Osteosyntheseplatten. Helv Chir Acta [Suppl] 12: 1

    Google Scholar 

  • Moor R, Tepic S, Perren SM (1989) Hochgeschwindigkeits-Film-Analyse des Knochenbruchs. Z Unfallchir 82: 128–132

    CAS  Google Scholar 

  • Müller ME, Allgöwer M, Willenegger H (1963) Technik der operativen Frakturenbehandlung. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Perren SM, Klaue K, Frigg R, Predieri M, Tepic S (1991) The concept of biolgical plating: the limited contact dynamic compression plate, LCDCP. Orthop Trauma

    Google Scholar 

  • Schenk R (1987) Cytodynamics and histodynamics of primary bone repair. In Lane JM (ed) Fracture healing. Churchill Livingstone, New York

    Google Scholar 

  • Swiontkowski M (1992) Pinless fixation — Part I: introduction. Injury 23 [Suppl 3]: 1–2

    Google Scholar 

  • Timoshenko S (1941) Strength of materials. Van Nostrand, Princeton Wolff J (1986 [18931) The law of bone remodeling. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perren, S.M., Buchanan, J., Hertel, R., Colton, C. (1994). Basic AO/ASIF Technique: Aims and Principles. In: AO/ASIF Instruments and Implants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03032-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03032-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03034-9

  • Online ISBN: 978-3-662-03032-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics