Skip to main content

Summary

The enzymatic defect in hereditary tyrosinemia type I is reduced activity of fumarylacetoacetase. Determination of succinyl acetone (SA) in the urine and of fumarylacetoacetase activity in lymphocytes or fibroblasts confirms the diagnosis. Clinical heterogeneity is characteristic of this disorder. The symptoms may start during the first few months (acute type), in the second half of the first year (subacute type), or in the following years up to the teens (chronic types). In the acute type symptoms and signs of hepatic failure predominate. Vomiting, diarrhea, edema, ascites, bleeding tendency, and rapid deterioration is typical. In the subacute type the same symptoms may develop, but usually not to the same extent. Hepatomegaly and/or rickets may be presenting findings. In the chronic forms two main types may be distinguished; one with and one without tubulopathy and rickets. The former type is the most common. A rare subgroup has porphyrialike symptoms with hypertension, abdominal pains, muscular weakness, and hyperparesthesia. Glomerular filtration failure is another rare complication. The patients without tubulopathy and rickets present with hepatomegaly, failure to thrive, or thrombocytopenia. Hepatoma may develop in all types of hereditary tyrosinemia. Mental retardation is not a symptom of hereditary tyrosinemia. Dietary treatment may be lifesaving in acute cases. It improves the general condition in the chronic forms, improves tubular dysfunction and growth, and may postpone development of hepatoma. Liver transplantation is the only curative treatment, but difficulty remains in deciding the optimal time for transplantation. Ideally it should be performed before hepatoma develops. The inheritance is autosomal recessive.

Tyrosinemia type II is caused by deficiency of the liver-specific cytosolic enzyme tyrosine aminotransferase. The main symptoms are keratitis and clouding of the cornea, palmar and plantar erosions and hyperkeratosis, and in about half the patients mental retardation. There are markedly elevated serum tyrosine levels, overflow tyrosinuria, and tyrosyluria. Dietary treatment with phenylalanine and tyrosine restriction rapidly heals the eye and skin symptoms. The inheritance is autosomal recessive and the tyrosine aminotransferase gene locus has been assigned to chromosome 16q22.1→q23.3.

Transitory tyrosinemia of the newborn has an exogenous cause. The incidence of elevated serum tyrosine levels in the newborn infant depends on protein intake. Lethargy has been reported, otherwise no definite side effects are observed. The basis for the high serum tyrosine levels is delayed maturation of parahydroxyphenylpyruvate dioxygenase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

SA:

Succinyl acetone

TAT:

Tyrosine aminotransferase

References

  1. Lindblad B, Lindstedt S, Steen G (1977) On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci USA 74: 4641–4645

    Article  PubMed  CAS  Google Scholar 

  2. Kvittingen EA, Halvorsen S, Jellum E (1983) Deficient fumarylacetoacetate fumarylhydrolase activity in lymphocytes and fibroblasts from patients with hereditary tyrosinemia. Pediatr Res 14: 541–544

    Article  Google Scholar 

  3. Halvorsen S, Pande H, Christie Loken AA, Gjessing LR (1966) Tyrosinosis. A study of 6 cases. Arch Dis Child 41: 238–249

    Article  PubMed  CAS  Google Scholar 

  4. Halvorsen G, Gjessing LR (1964) Studies on tyrosinosis: 1. Effect of low-tyrosine and lowphenylalanine diet. Br Med J 2: 1171–1173

    Google Scholar 

  5. Larochelle J, Mortezai A, Belanger M, Tremblay M, Claveau JC, Aubin G (1964) Experience with 37 infants with tyrosinemia. Can Med Assoc J 97: 1051–1054

    Google Scholar 

  6. Sovik O, Kvittingen EA, Steen Johnsen J, Halvorsen S (1988) Hereditary tyrosinemia with unusual phenotypic expression. Pediatr Res 24: 266

    Article  Google Scholar 

  7. Gentz J, Johansson S, Lindblad B. Lindstedt S, Zetterstrom R (1969) Excretion of 6-aminolevulinic acid in hereditary tyrosinemia. Clin Chim Acta 23: 257–262

    Article  CAS  Google Scholar 

  8. Pettit BR, MacKnezie F, King GS, Leonard JV (1984) The antenatal diagnosis and aid to the management of hereditary tyrosinaemia by use of a specific and sensitive GC-MS assay for succinylacetone. J Inherited Metab Dis [Suppl] 2: 135–136

    Google Scholar 

  9. Grenier A, Lecault A, Laberge C, Gagne R, Mamer 0 (1982) Detection of succinylacetone and the use of its measurement in mass screening for hereditary tyrosinemia. Clin Chim Acta 123: 93–99

    CAS  Google Scholar 

  10. Kvittingen EA (1986) Hereditary tyrosinemia type I–an overview. Scand J Clin Lab Invest 46 [Suppl 1841: 27–34

    Google Scholar 

  11. Kvittingen EA, Brodtkorb (1986) The pre-and post-natal diagnosis of tyrosinemia type I and the detection of the carrier state by assay of fumarylacetoacetase. Scand J Clin Lab Invest 46 [Suppl 184]: 35–40

    Google Scholar 

  12. Halvorsen S, Kvittingen EA, Flatmark A (1988) Outcome of therapy of hereditary tyrosinemia. Acta Paediatr Jpn 30: 425–428

    Article  PubMed  CAS  Google Scholar 

  13. Bickel H, Schmidt H (1980) Clinical aspects of the treatment of Phenylketonuria (PKU). In: Bickel H, Hudson FP, Woolf L (eds) Phenylketonuria and some other inborn errors of amino acid metabolism. Thieme, Stuttgart, p 232

    Google Scholar 

  14. Kappas A, Sassa S, Galbraith RA, Nordmann Y (1989) The porphyrias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, pp 1305–1365

    Google Scholar 

  15. Holme E, Lindblad B, Lindstedt S (1985) Possibilities for treatment and for early prenatal diagnosis of hereditary tyrosinaemia. Lancet I: 527

    Google Scholar 

  16. Starzl TE, Zitelli BF, Shaw BW, Iwatsuki S, Gartner JC, Gordon RD, Malatack JJ, Fox IJ, Urbach AH, van der Thiel DH (1985) Changing concepts: liver replacement for hereditary tyrosinemia and hepatoma. J Pediatr 106: 604–606

    Article  PubMed  CAS  Google Scholar 

  17. Kvittingen EA, Borresen AL, Stokke O, van der Hagen, Lie SO (1985) Deficiency of fumarylacetoacetase without hereditary tyrosinemia. Clin Genet 27: 550–554

    Article  PubMed  CAS  Google Scholar 

  18. Berger R, van Faassen H, van der Bergh I, Agsteribbe E, Wiemer E (1988) Different types of mutations in chronic and acute forms of type I tyrosinemia. Pediatr Res 24: 266

    Article  Google Scholar 

  19. Schweizer W (1947) Studies on the effect of I-tyrosine on the white rat. J Physiol 106: 167–174

    CAS  Google Scholar 

  20. Goldsmith LA, Laberge C (1989) Tyrosinemia and related disorders. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, pp 547–562

    Google Scholar 

  21. Salamon T, Hrnjica M, Schnyder UW, Lazovié O, Softié M, Topié B, Stolié V, Popovié N, Cerkez A, Basié V (1988) Vier Fälle von Richner-Hanhart-Syndrom ( Tyrosinämie Typ II) mit neurologischer Symptomatologie in einer jugoslawischen Familie. Hautarzt 39: 149–154

    Google Scholar 

  22. Natt E, Westphal EM, Toth-Fejel SV, Magenis RE, Buist NRM, Rettenmeier R, Scherer G (1987) inherited and de novo deletion of the tyrosine aminotransferase gene locus at 16g22.1—.822.3 in a patient with tyrosinemia type II_ Hum Genet 77: 352–358

    Google Scholar 

  23. Sandberg HO (1975) Bilateral keratopathy and tyrosinosis. Acta Ophtalmol 53: 760–764

    Article  CAS  Google Scholar 

  24. Halvorson S (1980) Screening for disorders of tyrosine metabolism. In: Bickel H, Guthrie R, Hammersen G (eds) Neonatal screening for inborn errors of metabolism. Springer, Berlin Heidelberg New York

    Google Scholar 

  25. Kindt E, Halvorsen S (1980) The need of essential amino acids in children. An evaluation based on the intake of phenylalanine, tyrosine, leucine, isoleucine and valine in children with phenylketonuria, tyrosine aminotransferase defect, and maple syrup urine disease. Am J Clin Nutr 33: 279–286

    Google Scholar 

  26. Fellman JH, Vanbellinghen PJ, Jones RT, Koler RD (1969) Soluble and mitochondrial forms of tyrosine aminotransferase. Relationship to human tyrosinemia. Biochemistry 8: 615–622

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Halvorsen, S. (1990). Tyrosinemia. In: Fernandes, J., Saudubray, JM., Tada, K. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02613-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02613-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02615-1

  • Online ISBN: 978-3-662-02613-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics