Skip to main content

Dynamics of Dissolved and Particulate Carbon in an Arctic Stream

  • Chapter
Landscape Function and Disturbance in Arctic Tundra

Part of the book series: Ecological Studies ((ECOLSTUD,volume 120))

Abstract

There are large stores of soil organic carbon in arctic tundra (Schlesinger 1977; Post et al. 1982), which has stimulated much research on understanding the net carbon balance in these terrestrial ecosystems (e.g., Shaver et al. 1992; Oechel et al. 1993; Tenhunen et al. 1995; see also Chaps. 11 and 17, this Vol.). However, aquatic ecosystems also play an important role in tundra carbon budgets. Kling et al. (1991) found that freshwater ecosystems in arctic Alaska showed net positive fluxes of CO2 to the atmosphere, and thus serve as sources, rather than sinks, of atmospheric carbon. Much of the CO2 in arctic aquatic systems is ultimately derived from terrestrial sources — eroding peat, soil dissolved organic matter, and inorganic carbon. Higher soil temperatures or a longer ice-free season at high latitudes may result in increased terrestrial decomposition and thus increased fluxes of organic materials to streams (Forsberg 1992; Oswood et al. 1992; Chap. 10, this Vol.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bird JB (1967) The physiography of arctic Canada. Hopkins Press, Baltimore

    Google Scholar 

  • Brinson MM (1976) Organic matter losses from four watersheds in the humid tropics. Limnol Oceanogr 21: 572–582

    Article  CAS  Google Scholar 

  • Craig PC, McCart PJ (1975) Classification of stream types in Beaufort Sea drainages between Prudhoe Bay, Alaska, and the Mackenzie Delta, NWT, Canada. Arct Alp Res 7: 183–198

    Article  CAS  Google Scholar 

  • Cronan CS (1990) Patterns of organic acid transport from forested watersheds to aquatic ecosystems. In: Perdue EM, Gjessing ET (eds) Organic acids in aquatic ecosystems. Wiley, New York, pp 245–260

    Google Scholar 

  • Firth P, Fisher SG (eds) (1992) Global climate change and freshwater ecosystems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Forsberg C (1992) Will an increased greenhouse impact in Fennoscandia give rise to more humic and coloured lakes? Hydrobiologia 229: 51–58

    Article  CAS  Google Scholar 

  • Foster IDL, Grieve IC (1982) Short-term fluctuations in dissolved organic matter concentrations in streamflow draining a forested watershed and their relation to the catchment budget. Earth Surface Proc Landforms 7: 417–425

    Article  Google Scholar 

  • Grieve IC (1984) Concentrations and annual loading of dissolved organic matter in a small moorland stream. Freshwater Biol 14: 533–537

    Article  CAS  Google Scholar 

  • Hammar J (1989) Freshwater ecosystems of polar regions: vulnerable resources. Ambio 18: 6–22

    Google Scholar 

  • Harper PP (1981) Ecology of streams at high latitudes. In: Lock MA, Williams DD (eds) Perspectives in running water ecology. Plenum Press, New York pp 41–68

    Google Scholar 

  • Heikkinen K (1989) Organic carbon transport in an undisturbed boreal humic river in northern Finland. Arch Hydrobiol 117: 1–19

    CAS  Google Scholar 

  • Hinzman LD, Kane DL, Gieck RE, Everett KR (1991) Hydrologic and thermal properties of the active layer in the Alaskan arctic. Cold Regions Sci Technol 19: 95–110

    Article  Google Scholar 

  • Hobbie JE (1980) Limnology of tundra ponds: Barrow, Alaska. Dowden, Hutchinson and Ross, Stroudsburg

    Google Scholar 

  • Hobbie JE (1984) Polar limnology In: Taub FT (ed) Lakes and reservoirs: ecosystems of the world, no 23. Elsevier, Amsterdam, pp 63–105

    Google Scholar 

  • Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water: fluxes and processes. Environ Pollut 84: 301–324

    Article  CAS  Google Scholar 

  • Hopkins DM, Karlstrom TNV, Black RF, Williams JR, Péwé TR, Fernald AT, Muller EH (1955) Permafrost and ground water in Alaska. US Geol Sury Prof Pap 264-F. US Gov Printing Office, Washington DC

    Google Scholar 

  • Hynes H B N (1975) The stream and its valley. Proc Int Assoc Theor Appl Limnol 19: 1–15

    Google Scholar 

  • Irons JG III, Oswood MW (1992) Seasonal temperature patterns in an arctic and two subarctic Alaskan (USA) headwater streams. Hydrobiologia 237: 147–157

    Article  Google Scholar 

  • Kane DL, Hinzman LD, Benson CS, Liston GE (1991) Snow hydrology of a headwater arctic basin 1. Physical measurements and process studies. Water Resour Res 27: 1099–1109

    Article  Google Scholar 

  • Kling GW, Kipphut GW, Miller, MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251: 298–301

    Article  CAS  Google Scholar 

  • Koprivnjak J-F, Moore TR (1992) Sources, sinks, and fluxes of dissolved organic carbon in subarctic fen catchments. Arct Alp Res 24: 204–210

    Article  Google Scholar 

  • McDowell WH, Wood T (1984) Podzolization: soil processes control dissolved organic carbon concentrations in stream water. Soil Sci 137: 23–32

    Article  CAS  Google Scholar 

  • McNight D, Thurman EM, Wershaw RL (1985) Biogeochemistry of aquatic humic substances in Thoreau’s Bog, Concord, Massachusetts. Ecology 66: 1339–1352

    Article  Google Scholar 

  • Meybeck M (1988) How to establish and use world budgets of riverine materials. In: Lerman A, Meybeck M (eds) Physical and chemical weathering in geochemical cycles. Kluwer, Dordrecht, pp 247–272

    Chapter  Google Scholar 

  • Meyer JL (1986) Dissolved organic carbon dynamics in two subtropical blackwater rivers. Arch Hydrobiol 108: 119–134

    CAS  Google Scholar 

  • Meyer JL (1990) Production and utilization of dissolved organic carbon in riverine ecosystems. In: Perdue EM, Gjessing ET (eds) Organic acids in aquatic ecosystems. Wiley, New York, pp 281–299

    Google Scholar 

  • Moeller JR, Minshall GW, Cummins KW, Petersen RC, Cushing CE, Sedell JR, Larson RA, Vannote RL (1979) Transport of dissolved organic carbon in streams of differing physiographic characteristics. Organic Geochem 1: 139–150

    Article  CAS  Google Scholar 

  • Moore TR (1988) Dissolved iron and organic matter in northern peatlands. Soil Sci 145: 70–76

    Article  CAS  Google Scholar 

  • Mulholland PJ, Kuenzler EJ (1979) Organic carbon export from upland and forested wetland watersheds. Limnol Oceanogr 24: 960–966

    Article  CAS  Google Scholar 

  • Mulholland PJ, Watts JA (1982) Transport of organic carbon to the oceans by rivers of North America: a synthesis of existing data. Tellus 34: 176–186

    Article  CAS  Google Scholar 

  • Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Richhers G, Grulke N (1993) Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361: 520–523

    Article  Google Scholar 

  • Oswood MW, Everett KR, Schell DM (1989a) Some physical and chemical characteristics of an arctic beaded stream. Holarct Ecol 12: 290–295

    Google Scholar 

  • Oswood MW, Irons JG III, Hilgert JW, Slaughter CW (1989b) Effects of riparian vegetation removal on an Alaskan subarctic stream In: Ashton WS (ed) Groundwater: Alaska’s hidden resource. Inst Water Resources, Univ Alaska, Faribanks, Report IWR 112: 3–13

    Google Scholar 

  • Oswood MW, Milner AM, Irons JG III (1992) Climate change and Alaskan rivers and streams. In: Firth P, Fisher SG (eds) Global climate change and freshwater ecosystems. Springer, Berlin Heidelberg New York, pp 192–210

    Chapter  Google Scholar 

  • Perkin-Elmer Instruments (1981) Model 240C elemental analyzer instruction manual. Norwalk, CT

    Google Scholar 

  • Peterson BJ, Hobbie JE, Corliss TL (1986) Carbon flow in a tundra stream ecosystem. Can J Fish Aquat Sci 43: 1259–1270

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298: 156–159

    Article  CAS  Google Scholar 

  • Qualls RG, Haines BL (1991) Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Sci Soc Am J 55: 1112–1123

    Article  Google Scholar 

  • Schlesinger WH (1977) Carbon balance in terrestrial detritus. Annu Rev Ecol Syst 8: 51–81

    Article  CAS  Google Scholar 

  • Schlesinger WH, Melack JM (1981) Transport of organic carbon in the world’s rivers. Tellus 33: 172–187

    Article  CAS  Google Scholar 

  • Sedell JR, Dahm CN (1990) Spatial and temporal scales of dissolved organic carbon in streams and rivers. In: Perdue EM, Gjessing ET (eds) Organic acids in aquatic ecosystems. Wiley, New York, pp 281–299

    Google Scholar 

  • Shaver GR, Billings WD, Chapin FS III, Giblin AE, Nadelhoffer KJ, Oechel WC, Rastetter EB (1992) Global change and the carbon balance of arctic ecosystems. BioScience 42: 433–441

    Article  Google Scholar 

  • Spitzy A, Leenheer J (1991) Dissolved organic carbon in rivers. In: Degens ET, Kempe S, Richey JE (eds) Biogeochemistry of major world rivers. Wiley, New York, pp 213–232

    Google Scholar 

  • Tate CM, Meyer JL (1983) The influence of hydrologic conditions and successional state on dissolved organic carbon export from forested watersheds. Ecology 64: 25–32

    Article  Google Scholar 

  • Telang SA, Pocklington R, Naidu AS, Romankevich EA, Gitelson II, Gladyshev MI (1991) Carbon and mineral transport in major North American, Russian arctic, and Siberian rivers: the St Lawrence, the Mackenzie, the Yukon, the Arctic Alaskan rivers, the arctic basin rivers in the Soviet Union, and the Yenisei In: Degens ET, Kempe S, Richey JE (eds) Biogeochemistry of major world rivers. Wiley, New York, pp 75–104

    Google Scholar 

  • Tenhunen JD, Gillespie CT, Oberbauer SF, Sala Serra A, Whalen SC (1995) Climate effects on the carbon balance of tussock tundra in the Philip Smith Mountains, Alaska. Flora 190: 273–283

    Google Scholar 

  • Thurman EM (1985) Organic geochemistry of natural waters. Martinus Nijhoff/Dr. W. Junk, Dordrecht

    Book  Google Scholar 

  • Tipping E, Hilton J, James B (1988) Dissolved organic matter in Cumbrian lakes and streams. Freshwater Biol 19: 371–378

    Article  CAS  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37: 130–137

    Article  Google Scholar 

  • Viavant TR (1989) Community structure, trophic relationships, and habitat ecology of the benthic macroinvertebrates in an Alaskan arctic tundra beaded stream. MS Thesis, Univ Alaska, Fairbanks

    Google Scholar 

  • Wallis PM, Hynes HBN, Telang SA (1981) The importance of groundwater in the transportation of allochthonous dissolved organic matter to the streams draining a small mountain lake. Hydrobiologia 79: 77–90

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oswood, M.W., Irons, J.G., Schell, D.M. (1996). Dynamics of Dissolved and Particulate Carbon in an Arctic Stream. In: Reynolds, J.F., Tenhunen, J.D. (eds) Landscape Function and Disturbance in Arctic Tundra. Ecological Studies, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01145-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01145-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01147-8

  • Online ISBN: 978-3-662-01145-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics