Skip to main content

Hair Keratin: Composition, Structure and Biogenesis

  • Chapter
Biology of the Integument

Abstract

The proteins of hair reside in the main histological components that make up a hair, namely the cortex, the outer covering of cuticle and in most hairs, a central core or medulla. Our knowledge of the chemical and physical properties of the proteins present in the cells of these three different cellular components is extensive and has produced a large body of scientific literature especially over the last 25 years. Most of it has arisen from the demands of wool research carried out in several countries and, relatively speaking, there is very little equivalent information available about human hair and other animal hairs. Necessarily then, most of the present discussion will draw on the wool model, but attention will also be given to results obtained with other animal hairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadi B, Speakman PT (1978) Suberimidate cross-linking shows that a rod-shaped lcw cystine, high-helix protein prepared by limited proteolysis of reduced wool has four protein chains. FEBS Lett 94: 365–367

    Article  PubMed  CAS  Google Scholar 

  • Banerji J, Rusconi S, Schaffner W (1981) Expression of a ß-globin gene is enhanced by remote SV40 DNA sequences. Cell 27: 299–308

    Article  PubMed  CAS  Google Scholar 

  • Banerji J, Olson L, Schaffner W (1983) A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33: 729–740

    Article  PubMed  CAS  Google Scholar 

  • Bernstein IA (1983) The proteins of keratohyalin. In: Goldsmith LA (ed) Biochemistry and physiology of the skin, 1st edn. Oxford Univ Press, Oxford, p 170

    Google Scholar 

  • Bertolino AP, Gibbs PEM, Freedberg IM (1982) In vitro biosynthesis of mouse hair kerati is under the direction of follicular RNA. J Invest Dermatol 79: 173–177

    Article  PubMed  CAS  Google Scholar 

  • Birbeck MSC, Mercer EH (1961) Cytology of cells which synthesize protein. Nature 189: 558–560

    Article  Google Scholar 

  • Bonés RM, Sikorski H (1967) The histological structure of wool fibres and their plasticity. J Text Inst 58: 521–532

    Google Scholar 

  • Bradbury JH (1973) The structure and chemistry of keratin fibres. Adv Protein Chem 27: 111–211

    Article  PubMed  CAS  Google Scholar 

  • Bradbury JH, Chapman RE (1964) The chemical composition of wool. I. The separation and microscopic characterisation of components produced by ultrasonic disintegration. Aust J Biol Sci 17: 960–972

    Google Scholar 

  • Brown TD, Onions WJ (1960) Anomalies in the microscopic structure of some wools. Nature 186: 93–94

    Google Scholar 

  • Chapman RE (1976) Electron microscopic and histochemical features of the formation of the orthocortex and paracortex in wool. In: Ziegler K (ed) 5th Int Wool Text Res Co-of 1975, vol II. Germ Wool Text Res Inst, Aachen, pp 152–161

    Google Scholar 

  • Chapman RE, Gemmell RT (1971) Stages in the formation and keratinization of the cortex of the wool fibre. J Ultrastruct Res 36: 342–354

    Article  PubMed  CAS  Google Scholar 

  • Charnay P, Treisman R, Mellon P, Chao M, Axel R, Maniatis T (1984) Differences in human a-and ß-globin gene expression in mouse erythroleukemia cells: the role of intragenic sequences. Cell 38: 251–263

    Article  PubMed  CAS  Google Scholar 

  • Cohen JB, Effron K, Rechavi G, Ben-Neriah Y, Zakut R, Givol D (1982) Simple DNA sequences in homologous flanking regions near immunoglobulin VH genes: a role in gene interaction? Nucleic Acids Res 10: 3353–3370

    Article  PubMed  CAS  Google Scholar 

  • Crewther WG (1976) Primary structure and chemical properties of wool. In: Ziegler K (ed) 5th Int Wool Text Res Conf 1975, vol I. Germ Wool Res Inst, Aachen, pp 1–101

    Google Scholar 

  • Crewther WG, Dowling LM, Inglis AS (1980) Amino acid sequence data from a microfibrillar protein of a-keratin. In: 6th Int Wool Text Res Conf 1980, vol II. S Afr Wool Text Res Inst, Pretoria, pp 79–91

    Google Scholar 

  • Crewther WG, Dowling LM, Gough KM, Inglis AS, Parry DAD (1982) Primary structure of a microfibrillar protein from wool. Abstr Proc 12th Int Congr Biochem, Perth, POS 004–205

    Google Scholar 

  • Crewther WG, Dowling LM, Steinert PM, Parry DAD (1983) Structure of intermediate filaments. Int J Biol Macromol 5: 267–274

    Article  CAS  Google Scholar 

  • Crick FC (1953) The packing of a-helices: simple coiled-coils. Acta Crystallogr 6: 689–697

    Article  CAS  Google Scholar 

  • Darskus RL (1972) Electrophoretic and chromatographic characterisation of sulphur-rich proteins from wool. J Chromatogr 69: 341–348

    Article  PubMed  CAS  Google Scholar 

  • DeDeurwaerder RA, Dobb MG, Sweeman BH (1964) Selective extraction of a protein fraction from wool keratin. Nature 203: 48–49

    Article  CAS  Google Scholar 

  • Dopheide TAA (1973) The primary structure of a protein component 0.62, rich in glycine and aromatic residues obtained from wool keratin. Eur J Biochem 34: 120–124

    Article  PubMed  CAS  Google Scholar 

  • Downes AM, Sharry LF, Rogers GE (1963) Separate synthesis of fibrillar and matrix proteins in the formation of keratin. Nature 199: 1059–1061

    Article  PubMed  CAS  Google Scholar 

  • Fraser IEB (1969a) Proteins of keratin and their synthesis. I. Proteins of pre-keratin and keratin. Aust J Biol Sci 22: 213–229

    PubMed  CAS  Google Scholar 

  • Fraser IEB (1969b) Proteins of keratin and their synthesis. II. Incorporation of [35S1-cysteine into pre-keratin and keratin proteins. Aust J Biol Sci 22: 231–238

    PubMed  CAS  Google Scholar 

  • Fraser RDB, MacRae TP (1980) Molecular structure and mechanical properties of keratins. In: Vincent JVF, Currey JD (eds) The mechanical properties of biological materials. Cambridge Univ Press, Cambridge, pp 211–246

    Google Scholar 

  • Fraser RDB, MacRae TP (1983) The structure of the a-keratin microfibril. Biosci Rep 3: 517–525

    Article  PubMed  CAS  Google Scholar 

  • Fraser RDB, Rogers GE (1953) Microscopic observations of the alkaline-thioglycollate extraction of wool. Biochim Biophys Acta 12: 484–485

    Article  PubMed  CAS  Google Scholar 

  • Fraser RDB, MacRae TP, Rogers GE (1972) Keratins. Their composition, structure and biosynthesis. Thomas, Springfield/Ill

    Google Scholar 

  • Fraser RDB, Gillespie JM, MacRae TP (1973) Tyrosine-rich proteins in keratins. Comp Biochem Physiol 44B: 943–947

    Article  CAS  Google Scholar 

  • Frenkel MJ, Blagrove RJ (1975) Controlled pore glass chromatography of protein-sodium dodecylsulphate complexes. J Chromatogr 111: 397–402

    Article  PubMed  CAS  Google Scholar 

  • Frenkel MJ, Gillespie JM, Reis PJ (1974) Factors influencing the biosynthesis of the tyrosine-rich proteins of wool. Aust J Biol Sci 27: 31–38

    PubMed  CAS  Google Scholar 

  • Frenkel MJ, Gillespie JM, Reis PJ (1975) Studies on the inhibition of synthesis of the tyrosine-rich proteins of wool. Aust J Biol Sci 28: 331–338

    PubMed  CAS  Google Scholar 

  • Gillespie JM (1963) The isolation and properties of some soluble proteins from wool. VII. The heterogeneity of the high-sulphur proteins. Aust J Biol Sci 16: 259–280

    CAS  Google Scholar 

  • Gillespie JM (1983) The structural proteins of hair: isolation, characterisation and regulation of biosynthesis. In: Goldsmith LA (ed) Biochemistry and physiology of the skin, 1st edn. Oxford Univ Press, Oxford, p 475

    Google Scholar 

  • Gillespie JM, Frenkel MJ (1974) The diversity of keratins. Comp Biochem Physiol 47B: 339–346

    CAS  Google Scholar 

  • Gillespie JM, Marshall RC (1980) Variability in the proteins of wool and hair. In: 6th Int Wool Text Res Conf 1980, vol II. S Afr Wool Text Res Inst, Pretoria, pp 67–77

    Google Scholar 

  • Gillespie JM, Marshall RC (1981) The proteins of normal and aberrant hair keratins. In: Orfanos CE, Montagna W, Stüttgen G (eds) Hair research. Springer, Berlin Heidelberg New York, pp 76–83

    Chapter  Google Scholar 

  • Gillespie JM, Marshall RC (1983) A comparison of the proteins of normal and trichothiodystrophic human hair. J Invest Dermatol 80: 195–202

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JM, Reis PJ (1966) The dietary-regulated biosynthesis of high-sulphur wool proteins. Biochem J 98: 669–677

    PubMed  CAS  Google Scholar 

  • Gillespie JM, Frenkel MJ, Reis PJ (1980) Changes in the matrix proteins of wool and mouse hair following the administration of depilatory components. Aust J Biol Sci 33: 125–136

    PubMed  CAS  Google Scholar 

  • Gillespie JM, Marshall RC, Moore GPM, Panaretto BA, Robertson DM (1982) Changes in the proteins of wool following treatment of sheep with epidermal growth factor. J Invest Dermatol 79: 197–200

    Article  PubMed  CAS  Google Scholar 

  • Gillies SD, Morrison SL, Oi VT, Tonegawa S (1983) A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33: 717–728

    Article  PubMed  CAS  Google Scholar 

  • Goddard DR, Michaelis L (1934) A study on keratin. J Biol Chem 106: 605–6614

    CAS  Google Scholar 

  • Happey F, Johnson AG (1962) Some electron microscope observations on hardening in the human hair follicle. J Ultrastruct Res 7: 316–327

    Article  PubMed  CAS  Google Scholar 

  • Harding HWJ, Rogers GE (1971) a-(y-Glutamyl)lysine cross-linkage in citrulline-containing protein fractions from hair. Biochemistry 10: 624–630

    Google Scholar 

  • Harding HWJ, Rogers GE (1972) Formation of the e-(y-glutamyl)lysine cross-link in hair proteins. Investigations of transamidases in hair follicles. Biochemistry 11: 2858–2863

    Google Scholar 

  • Harding HWJ, Rogers GE (1976) Isolation of peptides containing citrulline and the cross-link r-(y-glutamyl)lysine from hair medulla protein. Biochim Biophys Acta 427: 315–324

    Article  PubMed  CAS  Google Scholar 

  • Hayashida H, Miyata T (1983) Unusual evolutionary conservation and frequent DNA segment exchange in Class I genes of the major histocompatibility complex. Proc Natl Acad Sci USA 80: 2671–2675

    Article  PubMed  CAS  Google Scholar 

  • Haylett T, Swart LS, Parris D, Joubert FJ (1971) The primary structure of some high-sulphur proteins of reduced wool. Appl Polymer Symp 18: 37–44

    Google Scholar 

  • Horio M, Kondo T (1953) Crimping of wool fibres. Text Res J 23: 373–387

    Article  CAS  Google Scholar 

  • latrou K, Tsitilou SG, Kafatos FC (1984) DNA sequence transfer between two high-cysteine chorion gene families in the silkmoth Bombyx mori. Proc Natl Acad Sci USA 81: 4452–4456

    Article  Google Scholar 

  • Jones LN (1976) Studies on microfibrils from a-keratin. Biochim Biophys Acta 446: 515–524

    Article  PubMed  CAS  Google Scholar 

  • Kaplin IJ, Whiteley KJ (1978) An electron microscopic study of fibril: matrix arrangement in high-and low-crimp wool fibres. Aust J Biol Sci 31: 231–240

    PubMed  CAS  Google Scholar 

  • Karin M, Haslinger A, Holtgreve H, Richards RI, Krauter P, Westphal HM, Beato M (1984) Characterisation of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. Nature 308: 513–519

    Article  PubMed  CAS  Google Scholar 

  • Knott J, Belly M, Zahn H (1980) Separation of cuticle from wool by mechanical treatments. In: 6th Int Wool Text Res Conf 1980, vol II. S Afr Wool Text Res Inst, Pretoria, pp 93–112

    Google Scholar 

  • Krawinkel U, Zoebelein G, Bruggemann M, Radbruch A, Rajewsky K (1983) Recombination between antibody heavy chain variable-region genes: evidence for gene conversion. Proc Nati Acad Sci USA 80: 4997–5001

    Article  CAS  Google Scholar 

  • Kretschmer PJ, Coon HC, Davis A, Harrison M, Nienhuis AW (1981) Hemoglobin switching in sheep: isolation of the fetal y-globin gene and demonstration that the fetal y-and adult ß-globin genes lie within eight kilobase segments of homologous DNA. J Biol Chem 256: 1975–1982

    PubMed  CAS  Google Scholar 

  • Kuczek E, Rogers GE (1985) Sheep keratins: characterisation of cDNA clones for the glycine + tyrosine-rich wool proteins using a synthetic probe. Eur J Biochem 146: 89–93

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni VG, Bradbury JH (1974) The chemical composition of wool. XII. Further studies on cortical cells and macrofibrils. Aust J Biol Sci 27: 383–396

    Google Scholar 

  • Levinson B, Khoury G, Woude P van de, Gruss P (1982) Activation of SV40 genome by 72-base pair tandem repeats of moloney sarcoma virus. Nature 295: 568–572

    Article  PubMed  CAS  Google Scholar 

  • Ley KF, Crewther WG (1980) The proteins of wool cuticle. In: 6th Int Wool Text Res Conf 1980, vol II. S Afr Wool Text Res Inst, Pretoria, pp 13–28

    Google Scholar 

  • Marshall RC (1983) Characterisation of the proteins of human hair and nail by electrophores s. J Invest Dermatol 80: 519–524

    Article  PubMed  CAS  Google Scholar 

  • Marshall RC, Gillespie JM (1976) Heterogeneity, isolation and characterisation of the high-sulphur proteins from mouse hair. Aust J Biol Sci 29:1–10, 11–20

    Google Scholar 

  • Marshall RC, Gillespie JM (1981) Changes in wool protein components following chemical defleecing. In: Hudson PRW (ed) Proc 2nd Natl Conf Wool Harvest Res Dev, Sydney, pp 117–121

    Google Scholar 

  • Marshall RC, Gillespie JM, Inglis AS, Frenkel MJ (1980) High-tyrosine proteins of wool, heterogeneity and biosynthetic regulation. In: 6th Int Wool Text Res Conf 1980, vol 1I. S Afr Wool Text Res Inst, Pretoria, pp 147–158

    Google Scholar 

  • Matoltsy AG (1953) A study of the medullary cells of the hair. Exp Cell Res 5: 98–110

    Article  PubMed  CAS  Google Scholar 

  • Mercer EH (1953) The heterogeneity of keratin fibres. Text Res J 23: 388–397

    Article  CAS  Google Scholar 

  • Mercer EH (1961) Keratin and keratinization. Pergamon, Oxford

    Google Scholar 

  • Mulvihill ER, Le Pennec J-P, Chambon P (1982) Chicken oviduct progesterone receptor: location of specific regions of high-affinity binding in cloned DNA fragments of hormone-responsive genes. Cell 24: 621–632

    Article  Google Scholar 

  • Orwin DFG (1969) New ultrastructural features in the wool follicle. Nature 223: 401–403

    Article  Google Scholar 

  • Orwin DFG (1979) The cytology and cytochemistry of the wool follicle. Int Rev Cytol 60: 331–374

    Article  PubMed  CAS  Google Scholar 

  • O’Shea JM, Bradbury JH (1973) The effect of ultrasonic irradiation on proteins. Aust J Biol Sci 26: 583–590

    PubMed  Google Scholar 

  • Parry DAD, Fraser RDB, MacRae TP (1979) Repeating patterns of amino acid residues in the sequences of some high-sulphur proteins from a-keratin. Int J Biol Macromol 1: 17–22

    Article  CAS  Google Scholar 

  • Pollitt RJ, Stonier PD (1971) Proteins of normal hair and of cysteine-deficient hair from mentally retarded siblings. Biochem J 122: 433–444

    PubMed  CAS  Google Scholar 

  • Powell BC, Sleigh MJ, Ward KA, Rogers GE (1983) Mammalian keratin gene families: organisation of genes coding for the B2 high-sulphur proteins of sheep wool. Nucleic Acids Res 11: 5327–5346

    Article  PubMed  CAS  Google Scholar 

  • Queen C, Baltimore D (1983) Immunoglobulin gene transcription is activated by downstream sequence elements. Cell 33: 741–748

    Article  PubMed  CAS  Google Scholar 

  • Reis PJ (1979) Effects of amino acids on the growth and properties of wool. In: Black JL, Reis PJ (eds) Physiological and environmental limitations to wool growth. Univ New Engl Publ Unit, New South Wales, pp 223–242

    Google Scholar 

  • Rogers GE (1959a) Electron microscopic studies of hair and wool. Ann NY Acad Sci 83: 378–399

    Article  PubMed  CAS  Google Scholar 

  • Rogers GE (1959b) Electron microscopy of wool. J Ultrastruct Res 2: 309–330

    Article  PubMed  CAS  Google Scholar 

  • Rogers GE (1962) Occurrence of citrulline in proteins. Nature 194: 1149–1151

    Article  PubMed  CAS  Google Scholar 

  • Rogers GE (1964) Structural and biochemical features of the hair follicle. In: Montagna W, Lobitz WC (eds) The epidermis. Academic Press, London New York, p 179

    Google Scholar 

  • Rogers GE (1983) The occurrence of citrulline in structural proteins of the hair follicle. In: Goldsmith LA (ed) Biochemistry and physiology of the skin, ist edn. Oxford Univ Press, Oxford, p 475

    Google Scholar 

  • Rogers GE (1984) Studies on keratin multigene families. Biochem Soc Symp 49, in press

    Google Scholar 

  • Rogers GE, Harding HWJ, Llewellyn-Smith IJ (1977) The origin of citrulline-containing pro-teins in the hair follicle and the chemical nature of trichohyalin, an intracellular precursor. Biochim Biophys Acta 495: 159–175

    Article  PubMed  CAS  Google Scholar 

  • Rogers GE, Frenkel MJ, Lock RA (1981) Ribonucleic acids coding for the keratin complex of hair. In: Orfanos CE, Montagna W, Stüttgen G (eds) Hair research. Springer, Berlin Heidelberg New York, pp 84–93

    Chapter  Google Scholar 

  • Roth S, Helwig EB (1964) The cytology of the dermal papilla, the bulb and the root sheaths of mouse hair. J Ultrastruct Res 11: 33–51

    Article  PubMed  CAS  Google Scholar 

  • Shen S-H, Slightom JL, Smithies O (1981) A history of the human fetal globin gene duplication. Cell 26: 191–203

    Article  PubMed  CAS  Google Scholar 

  • Sparrow LG, Inglis AS (1980) Characterisation of the cyanogen bromide peptides of component 7c, a major microfibrillar protein from wool. In: 6th Int Wool Text Res Conf 1980, vol II. S Afr Wool Text Res Inst, Pretoria, pp 237–246

    Google Scholar 

  • Steinert PM, Rogers GE (1971) The synthesis of hair keratin in vitro. Biochim Biophys Acta 238: 150–155

    Article  PubMed  CAS  Google Scholar 

  • Steinert PM, Rogers GE (1973) In vitro studies on the synthesis of guinea-pig hair keratin proteins. Biochim Biophys Acta 312: 403–412

    Article  PubMed  CAS  Google Scholar 

  • Steinert PM, Harding HWJ, Rogers GE (1969) The characterisation of protein-bound citrulline. Biochim Biophys Acta 175: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Swart LS, Joubert FJ, Parris D (1976) Homology in the amino acid sequences of the high-sulphur proteins from keratins. In: Ziegler K (ed) 5th Int Wool Text Res Conf 1975, vol II. Germ Wool Res Inst, Aachen, pp 254–263

    Google Scholar 

  • Swift JA (1967) The electron histochemistry of cysteine-containing proteins in thin transverse sections of human hair. JR Microsc Soc 88: 449–460

    Article  Google Scholar 

  • Swift JA (1977) The histology of keratin fibres. In: Asquith RA (ed) Chemistry of natural protein fibres. Plenum Press, New York, pp 81–146

    Chapter  Google Scholar 

  • Swift JA (1981) The hair surface. In: Orfanos CE, Montagna W, Stüttgen G (eds) Hair research. Springer, Berlin Heidelberg New York, pp 65–72

    Chapter  Google Scholar 

  • Swift JA, Bews B (1976) The chemistry of human hair cuticle. IV: The isolation and amino acid analysis of various subfractions of the cuticle obtained by pronase and trypsin digestion. J Soc Cosmet Chem 27: 289–300

    Google Scholar 

  • Tenenhouse HS, Gold RJM (1976) Loss of a homologous group of proteins in a dominantly inherited ectodermal malformation. Biochem J 159: 149–160

    PubMed  CAS  Google Scholar 

  • Walker MD, Edlund T, Boulet AM, Rutter RJ (1983) Cell-specific expression controlled by the 5’-flanking region of insulin and chymotrypsin genes. Nature 306: 557–561

    Article  PubMed  CAS  Google Scholar 

  • Ward KA, Kasmarik SE (1980) The isolation of wool keratin messenger RNA from sheep. J Invest Dermatol 75: 244–248

    Article  PubMed  CAS  Google Scholar 

  • Whiteley KJ, Kaplin IJ (1977) The comparative arrangement of microfibrils in ortho-, mesoand paracortical cells of merino wool fibres. J Text Inst 68: 384–386

    Article  Google Scholar 

  • Wilkinson BR (1971) Cell-free biosynthesis of wool keratin proteins. Biochem J 125: 371–373

    PubMed  CAS  Google Scholar 

  • Woods EF (1979) Microfibrillar proteins of wool: partial specific volumes and molecular weights in denaturing solvents. Aust J Biol Sci 32: 423–435

    CAS  Google Scholar 

  • Woods EF, Gruen LC (1981) Structural studies on the microfibrillar proteins of wool: Characterisation of the a-helix-rich particle produced by chromotryptic digestion. Aust J Biol Sci 34: 515–526

    Google Scholar 

  • Woods JL, Orwin DFG (1980) Studies on the surface layers of the wool fibre cuticle. in: Parry DAD, Creamer LK (eds) Fibrous proteins: scientific, industrial and medical aspects, vol II. Academic Press, London New York, pp 141–149

    Google Scholar 

  • Wright S, Rosenthal A, Flavell R, Grosveld F (1984) DNA sequences required for regulated expression of ß-globin genes in murine erythroleukemia cells. Cell 38: 265–273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Powell, B.C., Rogers, G.E. (1986). Hair Keratin: Composition, Structure and Biogenesis. In: Bereiter-Hahn, J., Matoltsy, A.G., Richards, K.S. (eds) Biology of the Integument. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00989-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00989-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00991-8

  • Online ISBN: 978-3-662-00989-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics