Skip to main content

Hair, Wool, Quill, Nail, Claw, Hoof, and Horn

  • Chapter
Biology of the Integument

Abstract

Mammalian hair, wool, quill, nail, claw, hoof and horn are epidermal derivatives and all, like the stratum corneum of epidermis, give an α X-ray diffraction pattern. But, unlike str. corneum, which is a soft keratin, the above derivatives are hard keratins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appleyard HM (1960) Guide to the identification of animal fibres. Wool Ind Res Assoc, Leeds

    Google Scholar 

  • Auber L (1950) The anatomy of follicles producing wool-fibres, with special reference to keratinization. Trans R Soc Edinburgh 62: 191–254

    Google Scholar 

  • Baden HP (1970) The physical properties of nail. J Invest Dermatol 55: 115–122

    PubMed  CAS  Google Scholar 

  • Baden HP, Kubilus J (1983) Fibrous proteins of bovine hoof. J Invest Dermatol 81: 220–224

    PubMed  CAS  Google Scholar 

  • Bell M (1969) The ultrastructure of differentiating hair follicles in fetal rhesus monkeys (Macaca mulatta). In: Montagna W, Dobson RL (eds) Advances in biology of skin, vol IX. Hair growth. Pergamon Press, Oxford New York, pp 61–81

    Google Scholar 

  • Birbeck MSC, Mercer EH (1957a) The electron microscopy of the human hair follicle. Part 1. Introduction and the hair cortex. J Biophys Biochem Cytol 3: 203–214

    Google Scholar 

  • Birbeck MSC, Mercer EH (1957b) The electron microscopy of the human hair follicle. Part 2. The hair cuticle. J Biophys Biochem Cytol 3: 215–222

    Google Scholar 

  • Birbeck MSC, Mercer EH (1957e) The electron microscopy of the human hair follicle. Part 3. The inner root sheath and trichohyaline. J Biophys Biochem Cytol 3: 223–230

    Google Scholar 

  • Bonès RM, Sikorski J (1967) The histological structure of wool fibres and their plasticity. J Text Inst 58: 521–532

    Google Scholar 

  • Bradbury JH (1973) The structure and chemistry of keratin fibers. Adv Protein Chem 27: 111–211

    PubMed  CAS  Google Scholar 

  • Breathnach AS, Smith J (1968) Fine structure of the early hair germ and dermal papilla in the human foetus. J Anat 102: 511–526

    PubMed  CAS  Google Scholar 

  • Brown TD, Onions WJ (1960) Anomalies in the microscopic structure of some wools. Nature 186: 93–94

    Google Scholar 

  • Brunner H, Coman BJ (1974) The identification of mammalian hair. Inkata Press, Melbourne

    Google Scholar 

  • Butcher EO (1951) Development of the pilary system and the replacement of hair in mammals. Ann NY Acad Sci 53: 508–516

    PubMed  CAS  Google Scholar 

  • Carter HB (1943) Studies in the biology of skin and fleece of sheep. Aust Commonw Counc Sci Ind Res Bull No 164

    Google Scholar 

  • Carter HB, Hardy MH (1947) Studies in the biology of the skin and fleece of sheep. Aust Commonw Counc Sci Ind Res Bull No 215

    Google Scholar 

  • Chapman RE (1965) The ovine arrector pili musculature and crimp formation in wool. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 201–232

    Google Scholar 

  • Chapman RE (1971) Cell migration in wool follicles of sheep. J Cell Sci 9: 791–803

    PubMed  CAS  Google Scholar 

  • Chapman RE (1976) Electron microscopic and histochemical features of the formation of the orthocortex and paracortex in wool. Proc 5th Int Wool Text Res Conf Aachen 1975 2: 152–161

    Google Scholar 

  • Chapman RE (1979) Das Tierhaar. In: Orfanos CE (Hrsg) Haar and Haarkrankheiten. Fischer, Stuttgart, S 167–204

    Google Scholar 

  • Chapman RE (1980) A comparison of the effects of some defleecing compounds on wool follicles, fibres and skin of sheep. In: Hudson PRW (ed) Wool harvesting research and development. Aust Wool Corp, Melbourne, pp 271–286

    Google Scholar 

  • Chapman RE, Black JL (1981) Abnormal wool growth and alopecia of artifically reared lambs. Aust J Biol Sci 34: 11–26

    Google Scholar 

  • Chapman RE, Gemmell RT (1971a) The origin of cortical segmentation in wool follicles. J Invest Dermatol 57: 377–381

    PubMed  CAS  Google Scholar 

  • Chapman RE, Gemmell RT (1971b) Stages in the formation and keratinization of the cortex of the wool fiber. J Ultrastruct Res 36: 342–354

    PubMed  CAS  Google Scholar 

  • Chapman RE, Reis PJ (1978) Effects of abomasal supplements of methionine on the wool follicles and skin of wheat-fed sheep. Aust J Biol Sci 31: 161–172

    PubMed  CAS  Google Scholar 

  • Chapman RE, Ward KA (1979) Histological and biochemical features of the wool fibre and follicle. In: Black JL, Reis PJ (eds) Physiological and environmental limitations to wool growth. Univ New Engl Publ Unit, Armidale, pp 193–208

    Google Scholar 

  • Chapman RE, Downes AM, Wilson PA (1980) Migration and keratinization of cells in wool follicles. Aust J Biol Sci 33: 587–603

    PubMed  CAS  Google Scholar 

  • Chapman RE, Colebrook WF, Black JL (1983) Influence of dietary lysine content on wool follicle function in pre-ruminant lambs. J Agric Sci 101: 139–145

    CAS  Google Scholar 

  • Chase HB (1954) Growth of the hair. Physiol Rev 34: 113–126

    PubMed  CAS  Google Scholar 

  • Chase HB, Eaton GJ (1959) The growth of hair follicles in waves. Ann NY Acad Sci 83: 365–368

    PubMed  CAS  Google Scholar 

  • Chase HB, Silver AF (1969) The biology of hair growth. In: Bittar EE, Bittar N (eds) The biological basis of medicine, vol 6. Academic Press, London New York, pp 3–19

    Google Scholar 

  • Chase HB, Rauch H, Smith VW (1951) Critical stages of hair development and pigmentation in the mouse. Physiol Zool 24: 1–8

    PubMed  CAS  Google Scholar 

  • Clark WE LeGros (1936) The problem of the claw in primates. Proc Zool Soc London Pt 1: 1–24

    Google Scholar 

  • Davidson P, Hardy MH (1952) The development of mouse vibrissae in vivo and in vitro. J Anat 86: 342–356

    PubMed  CAS  Google Scholar 

  • De Weert J, Kint A, Geerts ML (1982) Morphological changes in the proximal area of the rat’s hair follicle during early catagen. Arch Dermatol Res 272: 79–92

    PubMed  Google Scholar 

  • Dolnick EH (1959) Histogenesis of hair in the mink and its relationship to dermal fetal fat cells. J Morphol 105: 1–31

    PubMed  CAS  Google Scholar 

  • Dry FW (1926) The coat of the mouse (Mus musculus). J Genet 16: 287–340

    Google Scholar 

  • Duerden JE, Ritchie MIA (1924) The development of the Merino wool fibre. S Afr J Sci 21: 480–497

    Google Scholar 

  • Dun RB (1959) The development and growth of vibrissae in the house mouse with particular reference to the time of action of the tabby (Ta) and ragged (Ra) genes. Aust J Biol Sci 12: 312–339

    Google Scholar 

  • Durward A, Rudall KM (1949) Studies on hair growth in the rat. J Anat 83: 325–335

    PubMed  CAS  Google Scholar 

  • Ebling FJ, Johnson E (1959) Hair growth and its relation to vascular supply in rotated skin grafts and transposed flaps in the albino rat. J Embryol Exp Morphol 7: 417–430

    PubMed  CAS  Google Scholar 

  • Epstein WL, Maibach HI (1969) Cell proliferation and movement in human hair bulbs. In: Montagna W, Dobson RL (eds) Advances in biology of skin, vol IX. Hair growth. Pergamon Press, Oxford New York, pp 83–97

    Google Scholar 

  • Ernst R (1954) Die Bedeutung der Wandepidermis (hyponychium) des Pferdehufes für die Hornbildung. Acta Anat (Basel) 22: 15–48

    CAS  Google Scholar 

  • Fitzpatrick TB, Brunet P, Kukita A (1958) The nature of hair pigment. In: Montagna W, Ellis RA (eds) The biology of hair growth. Academic Press, London New York, pp 255–303

    Google Scholar 

  • Forslind B (1970) Biophysical studies of the normal nail. Acta Derm Venereol (Stockh) 50: 161–168

    CAS  Google Scholar 

  • Forslind B, Swanbeck G (1966) Keratin formation in the hair follicle. 1. An ultrastructural investigation. Exp Cell Res 43: 191–209

    Google Scholar 

  • Fowler EH, Calhoun ML (1964) The microscopic anatomy of developing fetal pig skin. Am J Vet Res 25: 156–164

    PubMed  CAS  Google Scholar 

  • Fraser RDB, MacRae TP (1956) The distribution of ortho-and para-cortical cells in wool and mohair. Text Res J 26: 618–619

    Google Scholar 

  • Fraser RDB, Rogers GE (1953) Microscopic observations of the alkaline-thioglycollate extraction of wool. Biochim Biophys Acta 12: 484–485

    PubMed  CAS  Google Scholar 

  • Fraser RDB, Rogers GE (1955a) The bromine Allwörden reaction. Biochim Biophys Acta 16: 307–316

    PubMed  CAS  Google Scholar 

  • Fraser RDB, Rogers GE (1955b) The bilateral structure of wool cortex and its relation to crimp. Aust J Biol Sci 8: 288–299

    Google Scholar 

  • Fraser RDB, MacRae TP, Rogers GE (1959) Structure of a-keratin. Nature 183: 592–594

    PubMed  CAS  Google Scholar 

  • Fraser RDB, MacRae TP, Rogers GE (1972) Keratins. Their composition, structure and biosynthesis. Thomas, Springfield

    Google Scholar 

  • Fraser RDB, Jones LN, MacRae TP, Suzuki E, Tulloch PA (1980) The fine structure of the wool fibre. Proc 6th Quin Int Wool Text Res Conf Pretoria 1: 1–33

    Google Scholar 

  • Frater R (1983) Inhibition of growth of hair follicles by a lectin-like substance from rat skin. Aust J Biol Sci 36: 411–418

    PubMed  CAS  Google Scholar 

  • Frenkel MJ, Gillespie JM, Reis PJ (1975) Studies on the inhibition of synthesis of the tyrosine-rich proteins of wool. Aust J Biol Sci 28: 331–338

    PubMed  CAS  Google Scholar 

  • Frölich G, Spöttel W, Tänzer E (1929) Technologie der Textilfasern, Bd VIII. 1. Wollkunde. Springer, Berlin

    Google Scholar 

  • Gemmell RT, Chapman RE (1971) Formation and breakdown of the inner root sheath and features of the pilary canal epithelium in the wool follicle. J Ultrastruct Res 36: 355–366

    PubMed  CAS  Google Scholar 

  • Gibbs HF (1938) A study of the development of the skin and hair of the Australian opossum, Trichosurus vulpecula. Proc Zool Soc London 108B: 611–648

    Google Scholar 

  • Griineberg H (1952) The genetics of the mouse, 2nd edn. Nijhoff, The Hague

    Google Scholar 

  • Hardy MH (1949) The development of mouse hair in vitro with some observations on pigmentation. J Anat 83: 364–384

    PubMed  CAS  Google Scholar 

  • Hardy MH, Lyne AG (19561 The pre-natal development of wool follicles in Merino sheep. Aust J Biol Sci 9: 423–441

    Google Scholar 

  • Hashimoto K (1970) The ultrastructure of the skin of human embryos. V. The hair germ and perifollicular mesenchymal cells. Hair germ—mesenchyme interaction. Br J Dermatol 83: 167–175

    PubMed  CAS  Google Scholar 

  • Hashimoto K (1971) Ultrastructure of the human toenail. Cell migration, keratinization and formation of the intercellular cement. Arch Dermatol Forsch 240: 1–22

    Google Scholar 

  • Hashimoto K, Gross BG, Nelson R, Lever W (1966) The ultrastructure of the skin of human embryos. III. The formation of the nail in 16–18 weeks old embryos. J Invest Dermatol 47: 205–217

    PubMed  CAS  Google Scholar 

  • Hojiro O (1972) Fine structure of the mouse hair follicle. J Electron Microsc (Tokyo) 21: 127–138

    CAS  Google Scholar 

  • Hollis DE, Lyne AG (1975) Observations on the structure of vibrissa follicles in the marsupial Trichosurus vulpecula, with special reference to keratinization. Aust J Zool 23: 9–28

    Google Scholar 

  • Hollis DE, Chapman RE, Panaretto BA, Moore GPM (1983) Morphological changes in the skin and wool fibres of Merino sheep infused with mouse epidermal growth factor. Aust J Biol Sci 36: 419–434

    PubMed  CAS  Google Scholar 

  • Horio M, Kondo T (1953) Crimping in wool fibers. Text Res J 23: 373–386

    CAS  Google Scholar 

  • Jarrett A, Spearman RIC (1966) The histochemistry of the human nail. Arch Dermatol 94: 652–657

    PubMed  CAS  Google Scholar 

  • Jeffrey GM, Sikorski J, Woods HJ (1956) The microfibrillar structure of keratin fibres. Proc Int Wool Text Res Conf Aust 1955 F: 130–141

    Google Scholar 

  • Jenkinson D McE, Nay T (1975) The sweat glands and hair follicles of different species of Bovidae. Aust J Biol Sci 28: 55–68

    Google Scholar 

  • Johnson E (1965) Inherent rhythms of activity in the hair follicle and their control. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 491–505

    Google Scholar 

  • Jones FW (1921) The external characters of pouch embryos of marsupials. No 2 Notoryctes typhlops. Trans R Soc S Aust 45: 36–39

    Google Scholar 

  • Kaplin IJ, Whiteley KJ (1978) An electron microscope study of fibril:matrix arrangements in high-and low-crimp wool fibres. Aust J Biol Sci 31: 231–240

    PubMed  CAS  Google Scholar 

  • Kato T (1977) A study of the development of the cat claw. Hiroshima J Med Sci 26: 103–126

    PubMed  CAS  Google Scholar 

  • Lambert A, Restall BJ, Norton BW, Winter JD (1984) The postnatal development of hair follicle groups in the skin of the Australian feral goat. Proc Aust Soc Anim Prod 15: 420–423

    Google Scholar 

  • Leach DH, Oliphant LW (1983) Ultrastructure of the equine hoof wall secondary epidermal lamellae. Am J Vet Res 44: 1561–1570

    PubMed  CAS  Google Scholar 

  • Lee HJ, Moule GR (1947) Copper deficiency affecting sheep in Queensland. Aust Vet J 23: 303–309

    CAS  Google Scholar 

  • Lewis BL (1954) Microscopic studies of fetal and mature nail and surrounding soft tissue. Arch Dermatol Syphilol 70: 732–747

    Google Scholar 

  • Lindberg J, Mercer EH, Philip B, Gralén N (1949) The fine histology of the keratin fibers. Text Res J 19: 673–678

    CAS  Google Scholar 

  • Ling JK (1970) Pelage and moulting in wild mammals with special reference to aquatic forms. Q Rev Biol 45: 16–54

    PubMed  CAS  Google Scholar 

  • Ling JK, Thomas CDB (1967) The skin and hair of the southern elephant seal, Mirounga leonina (L.) II. Pre-natal and early post-natal development and moulting. Aust J Zool 15: 349–365

    Google Scholar 

  • Lovell JE, Getty R (1957) The hair follicle, epidermis, dermis and skin glands of the dog. Am J Vet Res 18: 873–885

    PubMed  CAS  Google Scholar 

  • Lyne AG (1957) The development and replacement of pelage hairs in the bandicoot Perameles nasuta Geoffroy (Marsupialia: Peramelidae). Aust J Biol Sci 10: 197–216

    Google Scholar 

  • Lyne AG (1959) The systematic and adaptive significance of the vibrissae in the Marsupialia. Proc Zool Soc London 133: 79–133

    Google Scholar 

  • Lyne AG (1965) The hair cycle in the chinchilla. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 467–489

    Google Scholar 

  • Lyne AG (1970) The development of hair follicles in the marsupial Trichosurus vulpecula. Aust J Biol Sci 23: 1241–1253

    PubMed  CAS  Google Scholar 

  • Lyne AG, Heideman MJ (1959) The pre-natal development of skin and hair in cattle (Bos taurus L.). Aust J Biol Sci 12: 72–95

    Google Scholar 

  • Lyne AG, Heideman MJ (1960) The pre-natal development of skin and hair in cattle. II. Bos indicus L. x B. taurus L. Aust J Biol Sci 13: 584–599

    Google Scholar 

  • Lyne AG, Hollis DE (1973) Development of horns in Merino sheep. Aust J Zool 21: 153–169

    Google Scholar 

  • Makinson KR (1954) The elastic anisotropy of keratinous solids. Aust J Biol Sci 7: 336–347

    PubMed  CAS  Google Scholar 

  • Mann SJ (1962) Prenatal formation of hair follicle types. Anat Rec 144: 135–141

    Google Scholar 

  • Margolena LA (1959) Skin and hair follicle development in dairy goats. Va J Sci 10: 33–47

    Google Scholar 

  • Menkart J, Coe AB (1958) Microscopic studies of the structure and composition of keratin fibers. Text Res J 28: 218–226

    CAS  Google Scholar 

  • Mercer EH (1953) The heterogeneity of the keratin fibers. Text Res J 23: 388–397

    CAS  Google Scholar 

  • Mercer EH (1961) Keratin and keratinization. Pergamon Press, Oxford New York

    Google Scholar 

  • Montagna W, Parakkal PF (1974) The structure and function of skin, 3rd edn. Academic Press, London New York

    Google Scholar 

  • Montagna W, Yasuda K, Ellis RA (1961) The skin of primates. V. The skin of the black lemur (Lemur macaco). Am J Phys Anthropol 19: 115–129

    PubMed  CAS  Google Scholar 

  • Nagorcka BN, Mooney JR (1982) The role of a reaction-diffusion system in the formation of hair fibres. J Theor Biol 94: 575–608

    Google Scholar 

  • Noback CR (1951) Morphology and phylogeny of hair. Ann NY Acad Sci 53: 476–491

    PubMed  CAS  Google Scholar 

  • Orwin DFG (1971) Cell differentiation in the lower outer sheath of the Romney wool follicle: a companion cell layer. Aust J Biol Sci 24: 989–999

    PubMed  CAS  Google Scholar 

  • Orwin DFG (1979) The cytology and cytochemistry of the wool follicle. Int Rev Cytol 60: 331–374

    PubMed  CAS  Google Scholar 

  • Parakkal PF (1969) The fine structure of anagen hair follicle of the mouse. In: Montagna W, Dobson RL (eds) Advances in biology of skin, vol IX. Hair growth. Pergamon Press, Oxford New York, pp 441–469

    Google Scholar 

  • Parakkal PF (1979) Katagen-und Telogenphase. In: Orfanos CE (Hrsg) Haar und Haarkrankheiten. Fischer, Stuttgart, S 77–93

    Google Scholar 

  • Parakkal PF, Matoltsy AG (1964) A study of the differentiation products of the hair follicle cells with the electron microscope. J Invest Dermatol 43: 23–34

    Google Scholar 

  • Pinkus H (1958) Embryology of hair. In: Montagna W, Ellis RA (eds) The biology of hair growth. Academic Press, London New York, pp 1–32

    Google Scholar 

  • Pinkus H, Iwasaki T, Mishima Y (1981) Outer root sheath keratinization in anagen and catagen of the mammalian hair follicle. A seventh distinct type of keratinization in the hair follicle: trichilemmal keratinization. J Anat 133: 19–35

    PubMed  CAS  Google Scholar 

  • Pocock RI (1914) On the facial vibrissae of mammalia. Proc Zool Soc London 1914: 889–912

    Google Scholar 

  • Poulton EB (1894) The structure of the bill and hairs of Ornithorhynchus paradoxus; with a discussion of the homologies and origin of mammalian hair. Q J Microsc Sci 36: 143–190

    Google Scholar 

  • Prota G, Thomson RH (1976) Melanin pigmentation in mammals. Endeavour 35: 32–38

    PubMed  CAS  Google Scholar 

  • Puccinelli VA, Caputo R, Ceccarelli B (1967) The structure of human hair follicle and hair shaft: an electron microscope study. G Ital Dermatol 108: 1–46

    Google Scholar 

  • Raphael KA, Chapman RE, Frith PA, Pennycuik PR (1982) The structure of hair and follicles of mice carrying the naked (N) gene. Genet Res 39: 139–148

    PubMed  CAS  Google Scholar 

  • Robins EJ, Breathnach AS (1969) Fine structure of the human foetal hair follicle at hair-peg and early bulbous-peg stages of development. J Anat 104: 553–569

    PubMed  CAS  Google Scholar 

  • Rogers GE (1959a) Electron microscope studies of hair and wool. Ann NY Acad Sci 83: 378–399

    PubMed  CAS  Google Scholar 

  • Rogers GE (1959b) Electron microscopy of wool. J Ultrastruct Res 2: 309–330

    PubMed  CAS  Google Scholar 

  • Rogers GE (1964) Structural and biochemical features of the hair follicle. In: Montagna W, Lobitz WC Jr (eds) The epidermis. Academic Press, London New York, pp 179–236

    Google Scholar 

  • Rogers GE (1969) The structure and biochemistry of keratin. In: Bittar EE, Bittar N (eds) The biological basis of medicine, vol 6. Academic Press, London New York, pp 21–57

    Google Scholar 

  • Rogers GE (1983) The occurrence of citrulline in structural proteins of the hair follicle. In: Goldsmith LA (ed) Biochemistry and physiology of the skin. Oxford Univ Press, New York Oxford, pp 511–521

    Google Scholar 

  • Roth SI (1965) The cytology of the murine resting (telogen) hair follicle. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 233–250

    Google Scholar 

  • Roth SI (1967) Hair and nail. In: Zelickson AS (ed) Ultrastructure of normal and abnormal skin. Lea and Febiger, Philadelphia, pp 105–131

    Google Scholar 

  • Roth SI, Helwig EB (1964) The cytology of the cuticle of the cortex, the cortex, and the medulla of the mouse hair. J Ultrastruct Res 11: 52–67

    PubMed  CAS  Google Scholar 

  • Rudall KM (1956a) The size and shape of the papilla in wool follicles. Proc Int Wool Text Res Conf Aust 1955 F: 9–25

    Google Scholar 

  • Rudall KM (1956b) The keratinization of horn. Proc Int Wool Text Res Conf Aust 1955 F: 176–185

    Google Scholar 

  • Ryder ML (1962) Structure of rhinoceros horn. Nature 193: 1199–1201

    Google Scholar 

  • Ryder ML (1966) Coat structure and seasonal shedding in goats. Anim Prod 8: 289–302

    Google Scholar 

  • Ryder ML, Stephenson SK (1968) Wool growth. Academic Press, London New York

    Google Scholar 

  • Scheffer VB (1962) Pelage and surface topography of the northern fur seal. N Am Fauna No 64

    Google Scholar 

  • Searle AG (1968) Comparative genetics of coat colour in mammals. Logos Press, London

    Google Scholar 

  • Segall A (1918) Über die Entwicklung und den Wechsel der Haare beim Meerschweinchen (Caria cobaya Schreb). Arch Mikrosk Anat Entwicklungsmech 91: 218–291

    Google Scholar 

  • Short BF, Wilson PA, Schinckel PG (1965) Proliferation of follicle matrix cells in relation to wool growth. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 409–426

    Google Scholar 

  • Silvers WK (1979) The coat colours of mice. A model for mammalian gene action and interaction. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sisson S (1975) Common integument. In: Getty R (ed) Sisson and Grossman’s. The anatomy of the domestic animals, 5th edn. Saunders, Philadelphia London Toronto

    Google Scholar 

  • Smith F (1890) The histology of the skin of the elephant. J Anat Physiol 24 New Ser 4.: 493–503

    Google Scholar 

  • Spearman RIC (1970) The epidermis and its keratinization in the African elephant (Loxodonta africana). Zool Afr 5: 327–338

    Google Scholar 

  • Spencer B, Sweet GF (1899) The structure and development of the hairs of monotremes and marsupials. Part 1. Monotremes. Q J Microsc Sci 41: 549–588

    Google Scholar 

  • Straile WE (1960) Sensory hair follicles in mammalian skin: the tylotrich follicle. Am J Anat 106: 133–148

    Google Scholar 

  • Straile WE (1962) Possible functions of the external root sheath during growth of the hair follicle. J Exp Zool 150: 207–223

    PubMed  CAS  Google Scholar 

  • Straile WE (1965) Root sheath-dermal papilla relationships and the control of hair growth. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 35–57

    Google Scholar 

  • Straile WE, Chase HB, Arsenault C (1961) Growth and differentiation of hair follicles between periods of activity and quiescence. J Exp Zool 148: 205–221

    PubMed  CAS  Google Scholar 

  • Stump JE (1967) Anatomy of the normal equine foot, including microscopic features of the laminar region. J Am Vet Med Assoc 151: 1588–1598

    PubMed  CAS  Google Scholar 

  • Sugiyama S, Takahashi M, Kamimura M (1976) The ultrastructure of the hair follicles in early and late catagen, with special reference to the alteration of the junctional structure between the dermal papilla and epithelial component. J Ultrastruct Res 54: 359–373

    PubMed  CAS  Google Scholar 

  • Swift JA (1977) The histology of keratin fibers. In: Asquith RS (ed) Chemistry of natural protein fibers. Plenum, New York London, pp 81–146

    Google Scholar 

  • Swift JA, Bews B (1974) The chemistry of human hair cuticle - I: A new method for the physical isolation of cuticle. J Soc Cosmet Chem 25: 13–22

    Google Scholar 

  • Taneda A, Ogawa H, Hashimoto K (1980) The histochemical demonstration of protein-bound sulfhydryl groups and disulfide bonds in human hair by a new staining method ( DACM staining ). J Invest Dermatol 75: 365–369

    Google Scholar 

  • Tenenhouse HS, Gold RJM (1976) Loss of a homologous group of proteins in a dominantly inherited ectodermal malformation. Biochem J 159: 149–160

    PubMed  CAS  Google Scholar 

  • Thorndike E (1968) A microscopic study of the marmoset claw and nail. Am J Phys Anthropol 28: 247–262

    PubMed  CAS  Google Scholar 

  • Whiteley KJ, Kaplin IJ (1977) The comparative arrangement of microfibrils in ortho-, meso-, and paracorticol cells of Merino-wool fibres. J Text Inst 68: 384–386

    Google Scholar 

  • Wildman AB (1932) Coat and fibre development of some British sheep. Proc Zool Soc London 1932 Pt 1: 257–285

    Google Scholar 

  • Wildman AB (1954) The microscopy of animal textile fibres. Wool Ind Res Assoc, Leeds

    Google Scholar 

  • Zaias N (1963) Embryology of the human nail. Arch Dermatol 87: 37–53

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chapman, R.E. (1986). Hair, Wool, Quill, Nail, Claw, Hoof, and Horn. In: Bereiter-Hahn, J., Matoltsy, A.G., Richards, K.S. (eds) Biology of the Integument. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00989-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00989-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00991-8

  • Online ISBN: 978-3-662-00989-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics