Skip to main content

Part of the book series: Springer Laboratory ((SLM))

Abstract

Nucleic acid hybridization has been one of the most powerful techniques in molecular biology during the past two decades. The applications of nucleic acid hybridization range from determination of overall similarity between organisms (Brenner, 1989) to determination of even a single base mutation in a given gene. Nucleic acid hybridizations are basically performed in three general ways: (1) solution hybridization, (2) hybridization on membrane filters, and (3) in situ hybridization to cytological preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angerer LM, Cox KH, Angerer RC (1987) Demonstration of tissue-specific gene expression by in situ hybridization. Meth Enzymol 152: 649

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ (1989) DNA hybridization for characterization, classification and identification of bacteria. In: Swaminathon B, Prakash G (eds) Nucleic Acid and Monoclonal Antibody Probes, Applications in Diagnostic Microbiology. Marcel Dekker, New York, N.Y.

    Google Scholar 

  • Brigati D, Myerson D, Leary J, Spalholz B, Travis S, Fong C, Hsiung G, and Ward D (1983) Detection of viral genomes in cultured cells and paraffin-embedded tissue sections using biotin labelled hybridization probes. Virology 126: 32

    Article  PubMed  CAS  Google Scholar 

  • Carlson DP, Superko C, Mackey J, Gaskill E, Hanson P (1990) Chemiluminescent detection of nucleic acid hybridization. Focus 12: 9–12

    Google Scholar 

  • Casey J, Davidson N (1977) Rates of formation and thermal stabilities of RNA:DNA and DNA:DNA duplexes at high concentrations of formamide, Nucleic Acids Res 4: 15–39

    Article  Google Scholar 

  • Chollet A, Kawashima EH (1988) Biotin labeled synthetic oligodeoxyribonucleotides: Chemical synthesis and uses as hybridization probes. Nucleic Acids Res 13: 1529–1541

    Google Scholar 

  • Cook A, Vuocolo E, and Brakel C (1988) Synthesis and hybridization of a series of biotinylated oligonucleotides. Nucleic Acids Res 16: 4077

    Article  Google Scholar 

  • DiLella AG, Woo SLC (1987) Hybridization of genomic DNA to oligonucleotide probes in the presence of tetramethylammonium chloride. Meth Enz 152: 447–451

    Article  CAS  Google Scholar 

  • Erlich HA, Gelfand D, Sninsky JJ (1991) Recent advances in polymerase chain reaction. Science, 252, 16–43

    Article  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1984) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Addendum Anal Biochem 137: 266–267

    Article  CAS  Google Scholar 

  • Flickinger JL, Gebeyehu G, Buchman G, Haces A, Rashtchian A (1992) Differential incorporation of biotinylated nucleotides by terminal deoxynucleotidyl transferase. Nucleic Acids Res 20: 23–82

    Article  Google Scholar 

  • Forster AC, McInnes JL, Skingle DC, and Symona RH (1985) Nonradioactive hybridization probes prepared by the chemical labeling of DNA and RNA with a novel reagent, photobiotin. Nucleic Acids Res 13: 745–761

    Article  PubMed  CAS  Google Scholar 

  • Gebeyehu G, Rao PY, SooChan P, Simms DA, and Kievan L (1987) Novel biotinylated nucleotide — analogs for labeling and calorimetric detection of DNA. Nucleic Acids Res 15: 4513–4534

    Article  PubMed  CAS  Google Scholar 

  • Goodchild J (1990) Conjugates of oligonucleotides and modified oligonucleotides: A review of their synthesis and properties. Bioconjugate Chem 1: 165–187

    Article  CAS  Google Scholar 

  • Hartley JL (1991) United States Patent 504: 32–72

    Google Scholar 

  • Kievan L and Gebeyehu G (1990) Biotinylated nucleotides for labeling and detecting DNA. Meth Enzymol 184: 561

    Article  Google Scholar 

  • Langer P, Waldrop A, Ward S (1981) Enzymatic synthesis of biotin-labeled polynuc- leotides: novel nucleic acid affinity probes. Proc Natl Acad Sci USA 18: 6633–6637

    Article  Google Scholar 

  • Lo YMD, Mehal WZ, Fleming KA (1988) Rapid production of vector-free biotinylated probes using the polymerase chain reaction. Nucleic Acids Res 16: 8719

    Article  PubMed  CAS  Google Scholar 

  • Mackey J and Rashtchian A (1992) A method for simultaneous labeling and amplification of DNA using random primers. Focus 14: 21–23

    Google Scholar 

  • Matthews JA, Kricka LJ (1988) Analytical strategies for the use of DNA probes. Anal Biochem 169: 1–25

    Article  PubMed  CAS  Google Scholar 

  • Meinkoth J, and Wahl G (1984) Hybridization of nucleic acids immobilized on solid supports. Biochem 138: 267–284

    CAS  Google Scholar 

  • Melton DA, Kreig P, Rebagliti MR, Maniatis T, Zinn K, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12: 7035

    Article  PubMed  CAS  Google Scholar 

  • Misiura K, Durrant I, Evans MR, Gait MJ (1990) Biotinyl and phosphotyrosinyl phosphoramadite derivatives useful in incorporation of multiple reporter groups. Nucleic Acids Res 18: 4345–4354

    Article  PubMed  CAS  Google Scholar 

  • Rashtchian A, and Mackey J (1992) Efficient synthesis of biotinylated DNA probes using polymerase chain reaction. Focus, 14: 64–65

    Google Scholar 

  • Rashtchian A (1992) Colorimetric detection of alkaline phosphate, In: Kricka L (ed) Nonisotopic DNA Probe Techniques, Academic Press

    Google Scholar 

  • Rigby P, Dieckmann M, Rhodes C, and Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113: 237

    Article  PubMed  CAS  Google Scholar 

  • Riley LK, Marshall ME, and Coleman MS (1986) A method for biotinylating oligonucleotide probes for use in molecular hybridization. DNA 5, 333

    Article  PubMed  CAS  Google Scholar 

  • Roget A, Bazin H, Teoule R (1989) Synthesis and use of labeled nucleoside phosphoramidite building blocks bearing a reporter group: biotinyl, dinitrophenyl, pyrenyl, and dansyl. Nucleic Acids Res 17: 7643–7651

    Article  PubMed  CAS  Google Scholar 

  • Saiki RK, Scharf SJ, Faloona FA, Mullis KB, Horn GT, Erlich HA, and Arnheim N (1985) Enzymatic amplification of b-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230, 1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, and Maniatis T (1989) Molecular Cloning: A Laboratory Man-ual, 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York Schowalter DB, Sommer SS (1989) The generation of radiolabeled DNA and RNA probes with polymerase chain reaction. Anal Biochem 177, 90

    Google Scholar 

  • Singer RH, Lawrence JB, and Rashtchian RN (1987) Toward a rapid and sensitive in situ hybridization methodology using isotopic and nonisotopic probes. In: Valentino K, Eberwine J, Barchas J (eds) In situ Hybridization: Application to the Central Nervous System, Oxford University Press, New York

    Google Scholar 

  • Angerer L, Davidson N, Murphy W, Lynch D, Attardi G (1976) An electron microscope study of the relative positions of the 4S and ribosomal RNA genes in HeLa cell mitochondrial DNA. Cell 9: 81–90

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Wilchek M (1978) The avidin-biotin complex as a tool in molecular biology. Trends Biol Sci 3: N257 — N259

    CAS  Google Scholar 

  • Bayer EA, Wilchek M (1980) The use of the avidin-biotin complex as a tool in molecular biology. Meth Biochem Anal 26: 1–45

    Article  CAS  Google Scholar 

  • Bayer EA, Wilchek M (1990) Protein biotinylation. Methods Enzymol 184: 138–160

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Skutelsky E, Wynne D, and Wilchek M (1976a) Preparation of ferritin-avidin conjugates by reductive alkylation for use in electron microscopic cytochemistry. J Histochem Cytochem 24: 933–939

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Wilchek M, Skutelsky E (1976b) Affinity cytochemistry: the localization of lectin and antibody receptors on erythrocytes via the avidin-biotin complex. FEBS Letters 68: 240–244

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Skutelsky E, Wilchek M (1979) The avidin-biotin complex in affinity cytochemistry. Meth Enzymol 62: 308–315

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Zalis M, Wilchek M (1985) 3-(N-Maleimido-propionyl) biocytin: a versatile thiol-specific biotinylating reagent. Anal Biochem 149: 529–536

    Google Scholar 

  • Heitzmann H, Richards FM (1974) Use of the avidin-biotin complex for specific staining of biological membranes in the electron microscope. Proc Natl Acad Sci USA 71: 3537–3541

    Article  PubMed  CAS  Google Scholar 

  • Manning JE, Hershey ND, Broker TR, Pellegrini M, Mitchell HK, Davidson N (1975) A new method of in situ hybridization. Chromosoma, 53: 107–117

    Article  PubMed  CAS  Google Scholar 

  • Wilchek M, Bayer EA (1984) The avidin-biotin complex in immunology Immunol Today 5: 39–43

    Article  CAS  Google Scholar 

  • Wilchek M, Bayer EA (1988) The avidin-biotin complex in bioanalytical applications. Anal Biochem 171: 1–32

    Article  PubMed  CAS  Google Scholar 

  • Wilchek M, Bayer EA (1989) Avidin-biotin technology ten years on: has it lived up to its“’ expectations? Trends Biol Sci 14: 408–412

    Article  CAS  Google Scholar 

  • Wilchek M, Bayer EA (eds) (1990) Avidin-biotin technology. Meth Enzymol, Vol 184, Academic Press, Orlando, Fla

    Google Scholar 

  • Wilchek M, Ben-Hur H, Bayer EA (1986) p-Diazobenzoyl biocytin — a new biotinylating reagent for the labeling of tyrosines and histidines in proteins. Biochem Biophys Res Commun 136: 80–85

    Google Scholar 

  • Wofsy L (1983) Methods and applications of hapten-sandwich labeling. Meth Enzymol 92: 472–488

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rashtchian, A., Mackey, J., Bayer, E.A., Wilchek, M. (1992). The Biotin System. In: Kessler, C. (eds) Nonradioactive Labeling and Detection of Biomolecules. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00144-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00144-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00146-2

  • Online ISBN: 978-3-662-00144-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics