Skip to main content

Designing Powerful Environments to Examine and Support Teacher Competencies for Models and Modelling

Original Text – Chapter 8

  • Chapter
  • First Online:
Lehrerkompetenzen zum Unterrichten mathematischer Modellierung

Part of the book series: Realitätsbezüge im Mathematikunterricht ((REIMA))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Eds.), The proceedings of the 12th International Congress on Mathematical Education: Intellectual and attitudinal Changes (p. 73–96). New York: Springer.

    Google Scholar 

  • Brady, C., & Lesh, R. (2015). A models and modelling approach to risk and uncertainty. The Mathematics Enthusiast, 12(1), 184–202.

    Google Scholar 

  • Brady, C., Eames, C. L., & Lesh, R. (2015). Connecting real-world and in-school problem-solving experiences. Quadrante, 24(2), 5–38.

    Google Scholar 

  • Brady, C., Dominguez, A., Glancy, A., Jung, H., McLean, J. & Middleton, J. (in press). Models and modelling working group. Proceedings of the Thirty-eighth Annual Conference of the North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, AZ: University of Arizona.

    Google Scholar 

  • Brady, C., Eames, C. L., & Lesh, R. (2018). The student experience of model development activities: Going beyond correctness to meet the needs of a client. In W. Blum & S. Schukajlow (Eds.), Evaluierte Lernumgebungen zum Modellieren (pp. 73–92). Springer.

    Google Scholar 

  • Chamberlin, M. T. (2005). Teachers’ discussions of students’ thinking: meeting the challenge of attending to students’ thinking. Journal of Mathematics Teacher Education, 8(2), 141–170.

    Article  Google Scholar 

  • Cobb, P., McClain, K., de Silva Lamberg, T., & Dean, C. (2003). Situating teachers’ instructional practices in the institutional setting of the school and district. Educational Researcher, 32(6), 13–24.

    Article  Google Scholar 

  • Diefes-Dux, H., Follman, D., Imbrie, P. K., Zawojewski, J., Capobianco, B., & Hjalmarson, M. A. (2004a). Model eliciting activities: an in-class approach to improving interest and persistence of women in engineering. In Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition. Salt Lake City. Bd. 1994.

    Google Scholar 

  • Diefes-Dux, H. A., Moore, T. J., Zawojewski, J., Imbrie, P. K., & Follman, D. (2004b). A framework for posing open-ended engineering problems: model-eliciting activities. 34th Annual Frontiers in Education, 2004. FIE 2004, (p. 455–460). https://doi.org/10.1109/FIE.2004.1408556.

    Book  Google Scholar 

  • Doerr, H. M., & Lesh, R. (2003). A modelling perspective on teacher development. In R. Lesh & H. Doerr (Eds.), Beyond constructivism: a models and modelling perspectives on mathematics problem solving, learning, and teaching (p. 125–140). Mahwah: Lawrence Erlbaum.

    MATH  Google Scholar 

  • English, L. D., & Mousoulides, N. G. (2011). Engineering-based modelling experiences in the elementary and middle classroom (p. 173–194). https://doi.org/10.1007/978-94-007-0449-7.

    Book  Google Scholar 

  • English, L. D., Jones, G., Bussi, M., Tirosh, D., Lesh, R., & Sriraman, B. (2008). Moving forward in international mathematics education research.

    MATH  Google Scholar 

  • Franke, M. L., Carpenter, T. P., Levi, L., & Fennema, E. (2001). Capturing teachers’ generative change: a follow-up study of professional development in mathematics. American educational research journal, 38(3), 653–689.

    Article  Google Scholar 

  • Guzey, S., Moore, T., & Morse, G. (2016). Student interest in engineering design-based science. School Science and Mathematics, 116(8), 411–419

    Google Scholar 

  • Hamilton, E., Lesh, R. A., Lester, F., & Brilleslyper, M. (2008). Model-eliciting activities (MEAs) as a bridge between engineering education research and mathematics education research. Advances in Engineering Education, 1(2). https://files.eric.ed.gov/fulltext/EJ1076067.pdf

  • Hjalmarson, M. A., & Lesh, R. (2008). Design research: engineering, systems, products, and processes for innovation. Handbook of international research in mathematics education, Bd. 2.

    Google Scholar 

  • Jung, H. (2015). Strategies to support students’ model development. Mathematics Teaching in the Middle School, 21(1), 42–48.

    Article  Google Scholar 

  • Jung, H., & Brady, C. (2015). Roles of a teacher and researcher during in situ professional development around the implementation of mathematical modelling tasks. Journal of Mathematics Teacher Education, 18(6), 1–19.

    Google Scholar 

  • Katims, N., & Lesh, R. (1994). PACKETS: a guidebook for inservice mathematics teacher development. Lexington: DC Heath.

    Google Scholar 

  • Kelly, A. E., & Lesh, R. (Eds.). (2000). The handbook of research design in mathematics and science education. Hillsdale: Lawrence Erlbaum.

    MATH  Google Scholar 

  • Kelly, A. E., Lesh, R., & Baec, J. Y. (2008). Handbook of innovative design research in science, technology, engineering, mathematics (STEM) education. Abingdon: Taylor & Francis.

    Google Scholar 

  • Kuntze, S. (2011). In-service and prospective teachers’ views about modelling tasks in the mathematics classroom—Results of a quantitative empirical study. In Trends in teaching and learning of mathematical modelling (pp. 279–288). Dordrecht: Springer.

    Google Scholar 

  • Kuntze, S., Silelr, H.-S., & Vogl, C. (2013). Teachers’ self-perceptions of their pedagogical content knowledge related to modelling – an empirical study with Austrian teachers. In G. Stillman, G. Kaiser, W. Blum & J. P. Brown (Eds.), Teaching mathematical modelling: connecting to research and practice (p. 317–326). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Lesh, R. (2003). Models & modeling in mathematics education. Monograph for International Journal for Mathematical Thinking & Learning. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lesh, R. (2008). Volleyball model-eliciting activity. http://www.indiana.edu/~iucme/mathmodeling/docs/volleyball_prob.pdf

    Google Scholar 

  • Lesh, R., & Doerr, H. M. (2003). In what ways does a models and modelling perspective move beyond constructivism? In R. Lesh & H. Doerr (Eds.), Beyond constructivism: a models and modelling perspectives on mathematics problem solving, learning, and teaching (p. 519–556). Mahwah: Lawrence Erlbaum.

    Chapter  Google Scholar 

  • Lesh, R., & Harel, G. (2003). Problem solving, modelling, and local conceptual development. Mathematical Thinking and Learning, 5(2–3), 157–189.

    Article  Google Scholar 

  • Lesh, R., & Kelly, A. (2000). Multitiered teaching experiments. In A. Kelly & R. Lesh (Eds.), Research design in mathematics and science education (p. 197–230). Mahwah: Lawrence Erlbaum.

    MATH  Google Scholar 

  • Lesh, R., & Lehrer, R. (2003). Models and modelling perspectives on the development of students and teachers. Mathematical thinking and learning, 5(2–3), 109–129.

    Article  Google Scholar 

  • Lesh, R., & Sriraman, B. (2005). Mathematics education as a design science. ZDM, 37(6), 490–505.

    Google Scholar 

  • Lesh, R., Amit, M., & Schorr, R. (1997). Using “real-life” problems to prompt students to construct conceptual models for statistical reasoning. In I. Gal & J. B. Garfield (Eds.), The assessment challenge in statistics education (pp. 65–83). Amsterdam: IOS Press.

    Google Scholar 

  • Lesh, R., Cramer, K., Doerr, H., Post, T., & Zawojewski, J. (2003). Model development sequences. In R. Lesh & H. Doerr (Eds.), Beyond constructivism: models and modelling perspectives on mathematics problem solving, learning and teaching (p. 35–58). Mahwah: Erlbaum.

    Chapter  Google Scholar 

  • Lesh, R., Carmona, L., & Moore, T. (2009). Six sigma learning gains and long-term retention of understanding and attitudes related to models and modelling. Mediterranean Journal for Research in Mathematics Education: An International Journal, 9(1), 19–54.

    Google Scholar 

  • Lesh, R., Haines, Galbraith, & Hurford (2010). International conference on the teaching of mathematical modelling and applications. In R. Lesh (Eds.), Modelling students’ mathematical modelling competencies. New York, NY: Springer.

    Chapter  Google Scholar 

  • Moore, T. J. (2008). Model-eliciting activities: a case-based approach for getting students interested in materials science and engineering. Journal of Materials Education, 30(5–6), 295–310.

    Google Scholar 

  • Moore, T. J., & Diefes-Dux, H. A. (2004). Developing model-eliciting activities for undergraduate students based on advanced engineering content. 34th Annual Frontiers in Education, 2004. FIE 2004. (p. 461–466). https://doi.org/10.1109/FIE.2004.1408557.

    Book  Google Scholar 

  • Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S., & Kim, Y. R. (2013). Modelling in engineering: the role of representational fluency in students’ conceptual understanding. Journal of Engineering Education, 102(1), 141–178.

    Article  Google Scholar 

  • Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teacher learning? Educational researcher, 29(1), 4–15.

    Article  Google Scholar 

  • Schorr, R., & Lesh, R. (2003). A modelling approach for providing teacher development. In R. Lesh & H. Doerr (Eds.), Beyond constructivism: models and modelling perspectives on mathematics problem solving, learning and teaching (p. 141–158). Mahwah: Erlbaum.

    Google Scholar 

  • Schorr, R. Y., & Koellner-Clark, K. (2003). Using modelling approach to analyze the ways in which teachers consider new ways to teach mathematics. Mathematical Thinking and Learning, 5(2–3), 191–210.

    Article  Google Scholar 

  • Wiggins, G., & McTighe, J. (2005). Understanding by design (2. edn.). Alexandra: ASCD.

    Google Scholar 

  • Yildirim, T. P., Shuman, L., & Besterfield-Sacre, M. (2010). Model-eliciting activities: assessing engineering student problem solving and skill integration processes. International Journal of Engineering Education, 26(4), 831–845.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eames, C., Brady, C., Jung, H., Glancy, A., Lesh, R. (2018). Designing Powerful Environments to Examine and Support Teacher Competencies for Models and Modelling. In: Borromeo Ferri, R., Blum, W. (eds) Lehrerkompetenzen zum Unterrichten mathematischer Modellierung. Realitätsbezüge im Mathematikunterricht. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-22616-9_11

Download citation

Publish with us

Policies and ethics