Skip to main content

Abstract

Wide ranges in the kinds and numbers of plant-parasitic nematodes occur in all agroecosystems, including those with annual and perennial crops, ornamentals, forests, and even greenhouse crops (Freckman and Caswell 1985; Norton 1978). Although parasites may be present in low numbers to billions per hectare, only certain species cause major epidemics and crop losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alston DG (1985) Population dynamics and development of Heterodera glycines as related to soybean phenology. MS Thesis, North Carolina State University, Raleigh North Carolina

    Google Scholar 

  • Ball DA, Ferris H (1982) A technique for inoculating field sites with Meloidogyne eggs. J Nematol 14: 420–422

    PubMed  CAS  Google Scholar 

  • Barker KR (1985a) Sampling nematode communities. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne, vol 2. Methodology. Cooperative Publication Department of Plant Pathology, North Carolina State University, and the United States Agency for International Development, Raleigh North Carolina, pp 3–17

    Google Scholar 

  • Barker KR ( 1985 b) The application of microplot techniques in nematological research. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne, vol 2. Methodology. Cooperative Publication Department of Plant Pathology, North Carolina State University, and the United States Agency for International Development, Raleigh North Carolina, pp 127–134

    Google Scholar 

  • Barker KR, Campbell CL (1981) Sampling nematode populations. In: Zuckerman BM, Rohde RA (eds) Plant parasitic nematodes, vol 3. Academic Press, London, pp 451–473

    Google Scholar 

  • Barker KR, Todd FA, Shane WW, Nelson LA (1981) Interrelationships of Meloidogyne species with flue-cured tobacco. J Nematol 13: 67–79

    PubMed  CAS  Google Scholar 

  • Barker KR, Schmitt DP, Imbriani JL (1985) Nematode population dynamics with emphasis on determining damage potential to crops. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne, vol 2. Methodology. Cooperative Publication of the Department of Plant Pathology, North Carolina State University, and the United States Agency for International Development, Raleigh North Carolina, pp 135–148

    Google Scholar 

  • Campbell CL, Noe JP (1985) The spatial analysis of soilborne pathogens and root diseases. Annu Rev Phytopathol 23: 129–148

    Article  Google Scholar 

  • Caswell EP, Thomason IJ (1985) Geographic distribution of Heterodera schachtii’m the Imperial Valley of California 1961 to 1983. Plant Dis 69: 1073–1077

    Google Scholar 

  • Caswell EP, MacGuidwin AE, Milne K, Nelsen CE, Thomason IJ, Bird GW (1986) A simulation model of Heterodera schachtii infecting Beta vulgaris. J Nematol 18: 512–519

    PubMed  CAS  Google Scholar 

  • Duncan LW, Ferris H (1983) Validation of a model for prediction of host damage by two nematode species. J Nematol 15: 227–234

    PubMed  CAS  Google Scholar 

  • Eisenback JD (1985) Interactions among concomitant populations of nematodes. In: Sasser JN, Carter CC (eds) An advanced treatise on Meloidogyne, vol 1, Biology and control. Cooperative Publication Plant Pathology Department, North Carolina State University and the United States Agency for International Development, Raleigh North Carolina, pp 193–213

    Google Scholar 

  • Esbenshade PR, Triantaphyllou AC (1985) Use of enzyme phenotypes for identification of Meloidogyne species. J Nematol 17: 6–20

    PubMed  CAS  Google Scholar 

  • Ferris H (1976) Development of a computer-simulation model for a plant-nematode system. J Nematol 8: 255–263

    PubMed  CAS  Google Scholar 

  • Ferris H (1985) Basic modeling strategies for nematode management. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne, vol 2, Methodology. Cooperative Publication Plant Pathology Department, North Carolina State University and the United States Agency for International Development, Raleigh North Carolina, pp 205–213

    Google Scholar 

  • Ferris VR, Ferris JM, Murdock LL (1985) Two-dimensional protein patterns in Heterodera glycines. J Nematol 17: 422–427

    PubMed  CAS  Google Scholar 

  • Freckman DW, Caswell EP (1985) The ecology of nematodes in agroecosystems. Annu Rev Phytopathol 23: 275–296

    Article  Google Scholar 

  • Garabedian S, Van Gundy SD (1982) Growth enhancement and inhibiting effect of insecticide/nematicides on the growth of plants in the absence of nematodes. J Nematol 14: 440–441 (abstr.)

    Google Scholar 

  • Goodell P, Ferris H (1980) Plant parasitic nematode distributions in an alfalfa field. J Nematol 12: 136–141

    PubMed  CAS  Google Scholar 

  • Jeger MJ, Starr JL (1985) A theoretical model of the winter survival dynamics of Meloidogyne spp. eggs and juveniles. J. Nematol 17: 257–260

    PubMed  CAS  Google Scholar 

  • Jones FGW, Kempton RA (1978) Population dynamics, population models and integrated control. In: Southey JF (ed) Plant nematology. Minist Agric, Fisheries and Food Tech Bull 7. Her Majesty’s Stationery Office, London, pp. 333–361

    Google Scholar 

  • Karandinos MG (1976) Optimum sample size and comments on some published formulae. Bull Entomol Soc Am 22: 417–421

    Google Scholar 

  • Kinloch RA (1982) The relationship between soil populations of Meloidogyne incognita and yield reduction of soybean in the coastal plain. J Nematol 14: 162–167

    PubMed  CAS  Google Scholar 

  • Komm DA, Riley J J, Elliott AP (1985) Epidemiology of a tobacco cyst nematode ( Globoder a solanacearum) in Virginia. Plant Dis 67: 1249–1251

    Google Scholar 

  • Lindow SE, Webb RR (1983) Quantification of foliar plant disease symptoms by microcomputer-digitized video image analysis. Phytopathology 73: 520–524

    Article  Google Scholar 

  • Long FL (1984) A field system for automatically measuring soil water potential. Soil Sei 137: 227–230

    Google Scholar 

  • Marks RJ, McKenna LA (1981) A dispenser for the rapid delivery of standard inocula of the cyst nematode Globoder a rostochiensis. Ann Appl Biol 97: 119–122

    Article  Google Scholar 

  • Martin MJ, Riedel RM, Rowe RC (1982) Verticillium dahliae and Pratylenchus penetrans: interactions in the early dying complex of potato in Ohio. Phytopathology 72: 640–644

    Article  Google Scholar 

  • Martin MJ, Riedel RM, Rowe RC (1983) A technique for quantitative use of nematodes from monoxenic tissue culture as soil inoculum. Plant Dis 67: 275–277

    Article  Google Scholar 

  • McSorley R, Ferris JM (1979) PHEX: a simulation of lesion nematodes in corn roots. Indiana Agric Exp Stn (Purdue) Res Bull 959, 22 pp

    Google Scholar 

  • Noe JP (1986) Cropping systems analysis for limiting losses due to plant-parasitic nematodes: guide to research methodology. Cooperative Publication Plant Pathology Department, North Carolina State University and the United States Agency for International Development, Raleigh North Carolina

    Google Scholar 

  • Noe JP, Barker KR (1985) Relation of within-field variation of plant-parasitic nematode population densities to edaphic factors. Phytopathology 75: 247–252

    Article  Google Scholar 

  • Noe JP, Campbell CL (1985) Spatial pattern analysis of plant-parasitic nematodes. J Nematol 17: 86–93

    PubMed  CAS  Google Scholar 

  • Norton DC (1978) Ecology of plant-parasitic nematodes. Wiley, New York

    Google Scholar 

  • Nusbaum CJ, Ferris H (1973) The role of cropping systems in nematode population management. Annu Rev Phytopathol 11: 423–440

    Article  Google Scholar 

  • Oostenbrink M (1966) Major characteristics of the relation between nematode and plants. Meded Landbouwhogesch Wageningen, 4–66

    Google Scholar 

  • Prot JC, Netscher C (1979) Influence of movement of juveniles on detection of fields infected with Meloidogyne. In: Lamberti F, Taylor CE (eds) Root-knot nematodes (Meloidogyne species) systematics, biology and control. Academic Press, London, pp 193–203

    Google Scholar 

  • Reddigari SR, Sundermann CA, Hussey RS (1985) Isolation of subcellular granules from second-stage juveniles of Meloidogyne incognita. J Nematol 17: 482–488

    PubMed  CAS  Google Scholar 

  • Rodriguez-Kabana R, Ivey H (1986) Crop rotation system for the management of Meloidogyne arenaria in peanut. Nematropica 16: 53–63

    Google Scholar 

  • Sasser JN, Barker KR, Nelson LA (1975) Correlations of field populations of nematodes with crop growth responses for determining relative involvement of species. J Nematol 7: 193–198

    PubMed  CAS  Google Scholar 

  • Schmitt DP, Ferris H, Barker KR (1987) The response of soybeans to Heterodera glycines in different soil types. J Nematol 18: 240–250

    Google Scholar 

  • Seinhorst JW (1965) The relation between population density and damage to plants. Nematologica 11: 137–154

    Article  Google Scholar 

  • Seinhorst JW (1967) The relationships between population increase and population density in plant parasitic nematodes. III. Definition of the terms host, host status and resistance. IV. The influence of external conditions on the regulation of population density. Nematologica 13: 429–442

    Article  Google Scholar 

  • Starr JL, Jeger MG (1985) Dynamics of winter survival of eggs and juveniles of Meloidogyne incognita and M. arenaria. J Nematol 17: 252–256

    PubMed  CAS  Google Scholar 

  • Taylor LR (1971) Aggregation as a species characteristic. In: Patil GP, Pielou EC, Waters WE (eds) Statistical ecology, vol 1: Spatial patterns and distribution patterns. Pennsylvania State University Press, University Park Pennsylvania, pp 357–372

    Google Scholar 

  • Vrain TC (1986) Role of soil water in population dynamics of nematodes. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology. Macmillian, New York; Collier Macmillian, London, pp 101–128

    Google Scholar 

  • Wallace HR (1973) Nematode ecology and plant disease. Edward Arnold, London Wallace HR (1983) Interactions between nematodes and other factors on plants. J Nematol 15: 221–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Heidelberg

About this chapter

Cite this chapter

Barker, K.R., Noe, J.P. (1988). Techniques in Quantitative Nematology. In: Kranz, J., Rotem, J. (eds) Experimental Techniques in Plant Disease Epidemiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95534-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95534-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-95536-5

  • Online ISBN: 978-3-642-95534-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics