Skip to main content

Abstract

This paper presents the results of the first systematic study of preferred orientation in quartz aggregates developed as a result of experimental deformation and recry-stallization. Earlier work led to apparently conflicting results which are mostly resolved in this study. What emerges, however, is a complex picture of several different types of preferred orientation developed under different experimental conditions.

In the a-quartz field, recrystallization during axial compression yields two different preferred orientations: at lower temperatures or faster strain-rates a maximum of c-axes develops parallel to the compression direction, σ1 (c-maximum fabric), and at higher temperatures or slower strain-rates a concentration of the normal to r (1011) develops parallel to σ1 (r-maximum fabric). At intermediate temperatures and strain-rates, the preferred orientations show aspects of both fabric types (composite fabrics). At high temperature and low strain-rate, orthorhombic strain due to temperature gradients produces “crossed girdles” of c-axes intersecting normal to σ1. An extended specimen shows c-axes concentrated at high angles to the extension direction, σ3.

In the ß-quartz field, recrystallization during compression yields a primary concentration of c-axes parallel to σ1 and a secondary concentration normal to σ1 (c ‖ σ1 + c σ1 fabric). One extended specimen shows a girdle of c-axes normal to σ3.

Textural differences in the specimens are found to correlate with the patterns of preferred orientation produced.

Annealing in the a-quartz field of specimens recrystallized during compression caused relatively minor, but significant, changes in the preferred orientations. Annealing of specimens which did not recrystallize during deformation also produced preferred orientations. In the ß-quartz field, annealing of syntectonically recrystallized specimens produced an extreme strenghtening of the c ‖ σ1 component of the preferred orientation and obliteration of the c ⊥ σ1 component. The textures of specimens annealed in the two stability fields are distinctly different.

The development of several preferred orientations, each of which correlates with specific experimental conditions and textural characteristics, indicates that more than one orienting mechanism is involved. A variety of possible mechanisms are discussed in terms of the experimental evidence.

A comparison with natural preferred orientations indicates that the mechanism responsible for development of the r-maximum fabric and the crossed girdles of c-axes probably operates under at least some conditions in nature and is responsible for the development of the crossed-girdle pattern common in metamorphic rocks. The maximum of c-axes normal to a foliation in some granulites may be due to deformation in the β-quartz field.

Publication # 764, Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90024.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Aust, K. T., and Rutter, J. W., 1959, Grain boundary migration in high-purity lead and dilute lead-tin alloys, Trans. A. I. M. E., v. 215, p. 119–27.

    Google Scholar 

  • Baker, D. W., 1965, Quartz girdle fabrics: Calculated transmission curves with crossed nicois and retardation plates (Abstract), Trans. Amer. Geoph. Union, v. 46, p. 541.

    Google Scholar 

  • Baker, D. W., Wenk, H.-R., and Christie, J. M., 1969, X-ray analysis of preferred orientations in fine-grained quartz aggregates, Jour. Geol., v. 77, p. 144–172.

    Article  Google Scholar 

  • Baker, D. W., and Wenk, H.-R., 1969, Spherical harmonic analysis of X-ray pole-figure data for specimens of low symmetry, (Abstract), Trans. Amer. Geophys. Union, v. 50, p. 323.

    Google Scholar 

  • Barrett, C. S., 1940, Recrystallization texture of aluminum after compression, Trans A. I. M. E.,v. 137, p. 128–149.

    Google Scholar 

  • Barrett, C. S., and Massalski, T. B., 1966, Structure of Metals, New York, McGraw-Hill, 3rd ed., pp. 654.

    Google Scholar 

  • Beck, P. A., 1951a, Origin of the cube texture in face-centered cubic metals, Trans. A. I.M. E., Jour. Metals, v. 3, p. 474–5.

    Google Scholar 

  • Beck, P. A., 1951b, ?, Trans. A. I. M. E., Jour. Metals, v. 3, p. 475–6.

    Google Scholar 

  • Beck, P. A., and Hu, H., 1959, Recrystallization texture and coarsening texture in high purity aluminum, Trans. A.I.M.E.,v. 185, p. 627–34.

    Google Scholar 

  • Beck, P. A., and Hu, H., 1966, The origin of recrystallization textures, in Recrystallization, grain growth and textures, Amer. Soc. Met., Metals Park, Ohio, p. 393–433.

    Google Scholar 

  • Beck, P. A., and Hu, H., Sperry, P. R., and Hu, H., 1950, The orientation dependence of the rate of grain boundary migration, Jour. Appl. Phys., v. 21, p. 420–25.

    Article  Google Scholar 

  • Blacic, J. D., and Griggs, D. T., 1965, New phenomena in experimental deformation of quartz at low strain rate (Abstract), Trans. Amer. Geoph. Union, v. 46, p. 541.

    Google Scholar 

  • Brace, W. F., and Walsh, J. B., Some direct measurements of the surface energy of quartz and ortho-clase, Amer. Min. v. 47, p. 1111–22.

    Google Scholar 

  • Bunge, H. J., 1959. Zur Darstellung von Fasertexturen, Monatsber. d. Deutsche Akad. d. Wiss., v. 1, p. 27–31, 400-04.

    Google Scholar 

  • Carter, N. L., Christie, J. M., and Griggs, D. T., 1961, Experimentally produced deformation lamellae and other structures in quartz sand (Abstract), Jour. Geoph. Res., v. 66, p. 2518–19.

    Google Scholar 

  • Carter, N. L., Christie, J. M., and Griggs, D. T., 1964. Experimental deformation and recrystallization of quartz, Jour. Geology, v. 72, p. 687–733.

    Article  Google Scholar 

  • Christie, J. M. and Green, H. W., 1964, Several new slip mechanisms in quartz (Abstract), Trans. Amer. Geoph. Union, v. 45, p. 103.

    Google Scholar 

  • Christie, J. M. and Green, H. W., Griggs, D. T., and Carter, N. L., 1964, Experimental evidence of basal slip in quartz, Jour. Geology, v. 72, p. 734–56.

    Article  Google Scholar 

  • Christie, J. M. and Green, H. W., and Raleigh, C. B., 1959, The origin of deformation lamellae in quartz, Amer. Jour. Sci., v. 257, p. 385–407.

    Article  Google Scholar 

  • DeVore, G. W. 1966, Elastic strain energy and mineral recrystallization, a commentary on rock deformation, Contr. Geology, v. 5, #2, Univ. Wyoming, p. 19–43.

    Google Scholar 

  • Goranson, R. W., 1930, Thermodynamic relations in multicomponent systems, Carnegie Inst. Wash. Publ. 408, p. 329.

    Google Scholar 

  • Green, H. W., 1966, Preferred orientation of quartz due to recrystallization during deformation, Trans. Amer. Geoph. Union, v. 47, p. 491.

    Google Scholar 

  • Green, H. W., H. W., 1967, Quartz: Extreme preferred orientation produced by annealing, Science, v. 157, p. 1444–47.

    Google Scholar 

  • Green, H. W., 1968a, Syntectonic and annealing recrystallization of a-quartz (Abstract), Trans. Amer. Geoph. Union, v. 49, p. 303.

    Google Scholar 

  • Green, H. W., 1968b, Metastable growth of coesite in highly strained quartz aggregates (Abstract), Trans. Amer. Geoph. Union, v. 49, p. 753.

    Google Scholar 

  • Green, H. W., 1968c, Syntectonic and annealing recrystallization of fine-grained quartz aggregates, Ph. D. Thesis, Univ. of Calif. Los Angeles, pp. 203.

    Google Scholar 

  • Griggs, D. T., 1967, Hydrolytic weakening of quartz and other silicates, Geoph. Jour. Royal Astr. Soc, v. 14, p. 19–31.

    Article  Google Scholar 

  • Griggs, D. T., and Blacic, J. D., 1965, Quartz: Anomalous weakness of synthetic crystals, Science, v. 147, p. 292–95.

    Article  Google Scholar 

  • Griggs, D. T., Starkey, J. S., Green, H. W., Blacic, J. D., Baker, D. W., Carter, N. L., and Christie, J. M., 1965, Recrystallization of flint — a puzzle (Abstract), Trans. Amer. Geoph. Union, v. 46, p. 541–2.

    Google Scholar 

  • Harvill, L. L., 1969, Deformational history of the Pelona Schist, California, Ph. D. Thesis, Univ. of California, Los Angeles.

    Google Scholar 

  • Hietanen, A., 1938, Petrology of the Finnish quartzites, Comm. Geol. Finlande Bull., no. 122, p. 1–118.

    Google Scholar 

  • Hobbs, B. E., 1966, Stress relaxation in single crystals of quartz (Abstract), Trans Amer. Geoph. Union, v. 47, p. 494.

    Google Scholar 

  • Hobbs, B. E., 1968, Recrystallization of single crystals of quartz, Tectonophysics, v. 6, p. 353–401. Hu, H., 1969, Reorientation in recrystallization, Trans. A. I. M. E., in press.

    Article  Google Scholar 

  • Ibe, G., and Lücke, K., 1966, Growth selection during recrystallization of single crystals, in Recrystallization, grain growth and textures, Amer. Soc. Met., Metals Park, Ohio, pp. 434–47.

    Google Scholar 

  • Ito, K., 1966, Thermodynamics of nonhydrostatically stressed solids with geologic applications, Jour. Fac. Sci. Univ. Tokyo, Sec. II, v. 16, p. 347–79.

    Google Scholar 

  • Kamb, W. B., 1959, Theory of preferred crystal orientation developed by crystallization under stress, Jour. Geol., v. 67, p. 153–70.

    Article  Google Scholar 

  • Kamb, W. B., 1961a, The thermodynamic theory of nonhydrostatically stressed solids, Jour. Geoph. Res., v. 66, p. 259–71.

    Article  Google Scholar 

  • Kamb, W. B., 1961b, Author’s reply to discussions of the paper “The thermodynamic theory of nonhydrostati-cally stressed solids”, Jour. Geoph. Res., v. 66, p. 3985–88

    Article  Google Scholar 

  • Kitshara, S., Tskenouchi, S., and Kennedy, G. C, 1966, Phase relations in the system Mg0-Si02-H20 at high temperatures and pressures, Amer. Jour. Sci., v. 264, p. 223–33.

    Article  Google Scholar 

  • Kumazawa, M., 1961, A note on the thermodynamic theory of nonhydrostatically stressed solids, Jour. Geoph. Res., v. 66, p. 3981–84.

    Article  Google Scholar 

  • Kumazawa, M., 1963, A fundamental thermodynamic theory on nonhydrostatic field and on the stability of mineral orientation and phase equilibrium, Jour. Earth Sci., Nagoya, Univ., v. 11, p. 145–217.

    Google Scholar 

  • Kumazawa, M., 1968a, Nonhydrostatic thermodynamics, basic concepts in theory and application (Abstract), Trans. Amer. Geoph. Union, v. 49, p. 303.

    Google Scholar 

  • Kumazawa, M., 1968b, Preferred orientation of pyrite, ice, quartz, olivine, and hornblende by recrystallization under stress (Abstract), Trans. Amer. Geoph. Union, v. 49, p. 303.

    Google Scholar 

  • Kvale, A., 1945, Petrofabric analysis of quartzite…, Norsk. Geol. Tidsskr., v. 25, p. 193.

    Google Scholar 

  • MacDonald, G. J. F., 1957, Thermodynamics of solids under nonhydrostatic stress with geological applications, Amer. Jour. Sci., v. 255, p. 266–81.

    Article  Google Scholar 

  • MacDonald, G. J. F., 1960, Orientation of anisotropic minerals in a stress field, Geol. Soc. Amer. Men. 79, p. 1–8.

    Google Scholar 

  • MacDonald, G. J. F., 1961, Discussion of paper by W. Barclay Kamb, “The thermodynamic theory of nonhydrostati-cally stressed solids”, Jour. Geoph. Res., v. 66, p. 2599.

    Article  Google Scholar 

  • McGeary, R. K., and Lustman, B., 1951, Preferred orientation in zirconium, Trans. A. I. M. E., Jour. Metals, v. 3, p. 994–1002.

    Google Scholar 

  • McLellan, A. G., 1966, A thermodynamical theory of systems under nonhydrostatic stresses, Jour. Geoph. Res., v. 71, p. 4341–4347.

    Google Scholar 

  • Parlange, J.-Y., 1968, Orientation of nuclei produced under nonhydrostatic stress, Science, v. 161, p. 358–359.

    Article  Google Scholar 

  • Raleigh, C. B., 1965, Crystallization and recrystallization of quartz in a simple piston-cylinder device, Jour. Geology, v. 73, p. 369–77.

    Google Scholar 

  • Reed-Hill, R. E., 1966, Physical metallurgy principles, Van Nostrand, Princeton, pp. 630.

    Google Scholar 

  • Roe, R. J. and Krigbaum, W. R., 1964, Description of crystallite orientation in polycrystalline materials having fiber texture, Jour. Chem. Phys., v. 40, p. 2608–15.

    Article  Google Scholar 

  • Sahama, Th. G., 1936, Die regelung von Quarz und Glimmer in den Gesteinen der Finnisch-Lappländischen Granulitformation, Comm. Geol. de Finlande Bull., No. 113, pp. 119.

    Google Scholar 

  • Sander, B., 1930, Gefügekunde der Gesteine, Springer, Berlin, Vienna, pp. 352.

    Book  Google Scholar 

  • Schmidt, W., 1925, Gefugestatistik, Tschermaks mineralog. petrog. Mitt., v. 38, p. 395–423.

    Google Scholar 

  • Schmidt, W., 1927, Untersuchungen über die Regelung des Quarzgefüges, Fort. Miner. Krist. Petr., v. 11, p.29.

    Google Scholar 

  • Starkey, J., 1964, An x-ray method for determining the orientation of selected crystal planes in polycrystalline aggregates. Amer. Jour. Sci., v. 262, p. 735–52.

    Article  Google Scholar 

  • Sylvester, A. G., and Christie, J. M., 1968, The origin of crossed girdle orientations of optic axes in deformed quartzites, Jour. Geol., v. 76, p. 571–580.

    Article  Google Scholar 

  • Thomas, L. A., and Wooster, W. A. 1951, Piezocrescence —the growth of Dauphiné twinning in quartz under stress, Proc. Roy. Soc. London, v. 208A, p. 43–62.

    Google Scholar 

  • Tullis, J., 1968, Preferred orientation in experimental quartz mylonites (Abstract), Trans. Amer. Geoph. Union, v.49, p. 755.

    Google Scholar 

  • Tullis, J., in press, Quartz: Preferred orientation in rocks produced by Dauphiné twinning. Science.

    Google Scholar 

  • Turner, F. and Weiss, L., 1963, Structural Analysis of Metamorphic Tectonites, McGraw-Hill, New York, pp. 545.

    Google Scholar 

  • Wenk, E., 1943, Ergebnisse und Probleme von Gefugeuntersuchungen im Verzasatal (Tessin), Schweiz. Min. Petr. Mitt., v. 23, p. 265–295.

    Google Scholar 

  • Wenk, H. R., Baker, D. W. and Griggs, D. T., 1967, X-ray analysis of hot-worked and annealed flint, Science, v. 157, p. 1447–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag, Berlin/Heidelberg

About this paper

Cite this paper

Green, H.W., Griggs, D.T., Christie, J.M. (1970). Syntectonic and Annealing Recrystallization of Fine-Grained Quartz Aggregates. In: Paulitsch, P. (eds) Experimental and Natural Rock Deformation / Experimentelle und natürliche Gesteinsverformung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95187-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95187-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-95189-3

  • Online ISBN: 978-3-642-95187-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics