Skip to main content

The Dynamics and Control of Direct Life Cycle Helminth Parasites

  • Conference paper
Vito Volterra Symposium on Mathematical Models in Biology

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 39))

Abstract

It is not widely appreciated that directly transmitted tapeworm and roundworm (nematode) parasites are some of the most prevalent of all human infections within many tropical, subtropical and temperate regions of the world. The roundworm Ascaris lumbricoides, for example, which is found in both tropical and temperate climates where there is adequate moisture and low standards of hygiene and sanitation, is one of, if not the most common of all human infections (Muller, 1975; Peters, 1978). Furthermore, the five most prevalent helminth parasites of man are all nematode species which are transmitted directly between hosts (Table 1). In 1975, W.H.O. statistics record that more than a third of the world’s population was infected with one or more of these species (Peters, 1978) (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R.M. (1976a). Dynamic aspects of parasite population ecology. In: Ecological Aspects of Parasitology. (Ed. by C.R. Kennedy). Ch. 21. North Holland, Amsterdam.

    Google Scholar 

  • Anderson, R.M. (1976b). Some simple models of the population dynamics of eucaryotic parasites. Mathematical Models in Medicine. (Ed. by J. Berger, W. BĂĽhler, R. Repges and P. Tautu). pp. 16–57. Lecture Notes in Biomabhemabics 11, Springer-Verlag, Berlin.

    Google Scholar 

  • Anderson, R.M. (1980). Strategic models for the control of infectious disease agents. In: The Management of Pest and Disease Systems. (Ed. by G.R. Conway). (in press)

    Google Scholar 

  • Anderson, R.M. & May, R.M. (1978). Regulation and stability of host parasite population interactions: I Regulatory processes. J. Anim. Ecol. 47: 219–249.

    Article  Google Scholar 

  • Anderson, R.M. & Michel, J.F. (1977). Density dependent survival in populations of Ostertagia ostertagi. Int. J. Pavasitol. 7: 321–329.

    Google Scholar 

  • Augustine, D.L. (1923a). Investigations on the control of hookworm disease. XVI Variation in length of life of hookworm larvae from the stools of different individuals. Am. J. Hyg. 3: 127–136.

    Google Scholar 

  • Augustine, D.L. (1923b). Investigations on the control of hookworm disease. XXIII Experiments on the factors determining the length of life of infective hookworm larvae. Am. J. Hyg. 3: 420–443.

    Google Scholar 

  • Augustine, D.L. (1926). Studies and observations on soil infestation with hookworm in southern Alabama from October 1923 to September 1924. Am. J. Hyg. 6 63–79.

    Google Scholar 

  • Augustine, D.L., & Smillie, W.G. (1926). The relation of the type of soils of Alabama to the distribution of hookworm disease. Am. J. Hyg. 6: 36 - 62.

    Google Scholar 

  • Bailey, N.T.J. (1975). The Mathematical Theory of Infectious Diseases. (2nd Edition) Griffith, London.

    Google Scholar 

  • Bliss, C.I. & Fisher, R.A. (1953). Fitting the negative binomial distribution to biological data and a note on the efficiency of fitting of the negative binomial. Biometrics 9: 176–200.

    Article  MathSciNet  Google Scholar 

  • Chowdhury, A.B. & Schiller, E.L. (1968). A survey of parasitic infections in a rural community near Calcutta. Am. J. Epidemiol. 87: 299–312.

    Google Scholar 

  • C.I.B.A. Foundation Symposium No. 49 (1977). Health and Disease in Tribal Societies. Elsevier, Amsterdam.

    Google Scholar 

  • Clegg, J.A. & Smith, M.A. (1978). Prospects for the development of dead vaccines against helminths. Advances in Parasitology 16: 165–218.

    Article  Google Scholar 

  • Conway, G.R.; Glass, N.R. & Wilcox, J.C. (1970). Fitting non-linear models to biological data by Marquardtfs algorithm. Ecology 51: 503–508.

    Article  Google Scholar 

  • Cort, W.W.; Payne, G.C. & Riley, W.A. (1923). Investigations on the control of hookworm disease. XXVIII A study of a heavily infected group of people on a sugar and coffee estate in Porto Rico, before and after treatment. Am. J. Hyg. 3: 85–110.

    Google Scholar 

  • Crofton, H.D. (1971). A quantitative approach to parasitism. Parasitology 62: 179–194.

    Article  Google Scholar 

  • Dietz, K. (1976). The incidence of infectious diseases under the influence of seasonal fluctuations. In: Mathematical Models in Medicine. (Ed. Berger, J.; Buhler, W.-; Repges, R. and Tautu, P.). Lecture Notes in Biomathematics 11: 1–15.

    Chapter  Google Scholar 

  • Docherty, J.F. (1926). Hookworm infestation and reinfestation in Ceylon. A study of high incidence with a moderate degree of infestation. Am. J. Hyg. 6: 160–171.

    Google Scholar 

  • Fisher, R.A. (1930). The genetical theory of natural selection. Clarendon, Oxford.

    MATH  Google Scholar 

  • Hill, R.B. (1926). The estimation of the number of hookworms harboured, by the use of the dilution egg count method. Am. J. Hyg. 6 (suppl.): 19–41.

    Google Scholar 

  • Hoagland, K.E. & Schad, G.A. (1978). Beoator amerioanus and Anoylostoma duodenalei Life history parameters and epidemiological implications of two sympatric hookworms of humans. Expt. Parasitol. 44: 36–49

    Article  Google Scholar 

  • Hsieh, H.C. (1970). Studies on endemic hookworm: I. Survey and longitudinal observations in Taiwan. Jap. J. Parasit. 19: 508–522.

    Google Scholar 

  • Kermack, W.O. & Mckendrick, A.G. (1927). Contributions to the mathematical theory of epidemics. Proc. Roy. Soo. A, 115: 700–721.

    Article  MATH  Google Scholar 

  • Keymer, A.E. & Anderson, R.M. (1979). The dynamics of infection of Tribolium confusum by Hymenolepis diminuta: the influence of infective stage density and spatial distribution. Parasitology 79: 195–207.

    Article  Google Scholar 

  • Krupp, I.M. (1961). Effects of crowding and of superinfection on habitat selection and egg production in Anoylostoma oaninum. J. Parasitol. 47: 957–961.

    Article  Google Scholar 

  • Leyton, M.K. (1968). Stochastic models in populations of helminthic parasites in the definitive host: II. Sexual mating functions. Math. Biosoi. 3: 413–419.

    Article  MATH  Google Scholar 

  • Macdonald, G. (1965). The dynamics of helminth infections, with special reference to schistosomes. Trans. Roy. Soc. Trop. Med. Hyg.. 59: 489–506.

    Article  Google Scholar 

  • May, R.M. (1977). Togetherness among schistosomes: its effects on the dynamics of the infection. Math. Bioso. 15: 301–343.

    Article  Google Scholar 

  • May, R.M. & Anderson, R.M. (1978). Regulation and stability of host parasite population interactions: II. J. Anim. Ecol. 47249–267.

    Google Scholar 

  • May, R.M. & Anderson, R.M. (1979). Population biology of infectious diseases: Part II. Nature 280: 455–461.

    Article  Google Scholar 

  • Miller, T.A. (1978). Industrial development and field use of the canine hookworm vaccine. Advances in Parasitology 16: 333–342.

    Article  Google Scholar 

  • Mills, C.A.; Anderson, R.M. & Whitfield, P.J. (1979). Density-dependent survival and reproduction within populations of the ectoparasitic digenean, TransVersotrema patialense on the fish host. J. Anim. Ecol. 48: 383–399.

    Article  Google Scholar 

  • Muller, R. (1975). Worms and Diseases. Heineman, London.

    Google Scholar 

  • Nasell, I. & Hirsch, W.M. (1973). The transmission dynamics of schistosomiasis. Can. Pure Appl. Maths. 26: 395–453.

    Article  MathSciNet  MATH  Google Scholar 

  • Nawalinski, T.; Schad, G.A. & Chowdhury, A.B. (1978a). Population biology of hook-worms in children in rural West Bengal. I. General parasitological observations. Am. J. Trop. Med. Hyg. 27: 1152–1161.

    Google Scholar 

  • Nawalinski, T.; Schad, G.A. & Chowdhury, A.B. (1978b). Population biology of hook-worms in children in rural West Bengal. II. Acquisition and loss of hookworms. Am. J. Trop. Med. Hyg. 27 1162–1173.

    Google Scholar 

  • Pampighone, S. & Ricciardi, M.L. (1972). Geographic distribution of Strongyloides fUllebomi in humans in tropical Africa. Parassitologia 14; 329–338.

    Google Scholar 

  • Payne, F.K. (1924). Investigations on the control of hookworm disease. XXXI. The relation of the physiological age of hookworm larvae to their ability to infect the human host. Am. J. Hyg. 3: 584–597.

    Google Scholar 

  • Pesigan, T.P.; Forooq, M.; Hairston, N.G.; Jaurequi, J.J.; Garcia, E.G.; Santos, A.T.; Santos, B.C. & Besa, A.A. (1953). Studies on Schistosoma japonicum infection in the Philippines. I. General considerations and epidemiology. Bull. Wld. Hlth. Org. 18: 345–455,

    Google Scholar 

  • Peters, W. (1978). Medical Aspects: Comments and Discussion II. In: The Relevance of Parasitology to Human Welfare Today. (Ed. by A.E. Taylor and R. Muller). Symposium of the British Society for Parasitology 16. Blackwell Scientific Publications. Oxford.

    Google Scholar 

  • Schad, G.A. (1971). The ecology of interacting populations of man and hookworms in rural West Bengal. Report of the John Hopkins Center for Medical Research and Training 1969–1970: 5–24,

    Google Scholar 

  • Stoll, N.R. (1923a). Investigations on the control of hookworm disease. XVIII. On the relation between the number of eggs found in human faeces and the number of hookworms in the host. Am. J. Hyg. 3: 103–117.

    Google Scholar 

  • Stoll, N.R. (1923b). Investigations on the control of hookworm disease. XVII. A quantitative study defining a point of breakdown of hookworm eggs cultured in faeces, and its association with intense acidity. Am. J. Hyg. 3: 137–155,

    Google Scholar 

  • Sturrock, R.F. (1967). Hookworm studies in Tanganyika (Tanzania): The results of a series of surveys on a group of primary school children and observations on the survival of hookworm infective larvae exposed to simulated field conditions. E. Afr. Med. J. 44: 142–149.

    Google Scholar 

  • Tallis, G.M. & Leyton, M.K. (1969). Stochastic models of populations of helminthic parasites in the definitive host: I. Math. Biosci. 4 39–48.

    Article  MATH  Google Scholar 

  • Wakelin, D. (1978). Immunity to intestinal parasites. Nature 273: 617–620.

    Article  Google Scholar 

  • United Nations (1976). Demographic Yearbook 1975, United Nations, New York.

    Google Scholar 

  • Verhulst, P.F. (1838). Notice surlaloique la population suit clansson accroissement. Corresp. Math. Phys. 10: 113–121,

    Google Scholar 

  • Yanagisawa, R. & Mizuno, T. (1963). On the infection mode of hookworm. Medical Culture S(1): 112–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anderson, R.M. (1980). The Dynamics and Control of Direct Life Cycle Helminth Parasites. In: Barigozzi, C. (eds) Vito Volterra Symposium on Mathematical Models in Biology. Lecture Notes in Biomathematics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93161-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93161-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10279-3

  • Online ISBN: 978-3-642-93161-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics