Skip to main content

Organic Chemical Models for Proteinase Inhibitors

  • Conference paper
Proteinase Inhibitors

Part of the book series: Bayer-Symposium ((BAYER-SYMP,volume 5))

Abstract

The research to be reviewed briefly here began as an attempt to find a way to introduce new nucleophiles at enzyme active sites and to study the chemical behavior of these nucleophiles. Earlier work by Bender [1–4] and Koshland [5–6] seemed to indicate that the prospects for observing effective nucleophilic catalysis by newly introduced nucleophiles at enzyme active sites were not good. Specifically, they had carried out the conversion of the serine hydroxyl present at the active site of the well known proteinase, subtilisin, to a sulfhydryl group. The question which this experiment was designed to answer was whether the newly introduced sulfhydryl group would act as an efficient catalytic participant in the enzymatic hydrolysis of esters and peptides. Certainly, there are numerous proteinases like papain, for instance, where in the native form of the enzyme an active site sulfhydryl group is acylated and deacy-lated in the course of the enzyme-catalyzed hydrolysis of esters and peptides, and the expectation that a synthetically produced active site sulfhydryl group in thiol-subtilisin could play a similar role was reasonable. Nevertheless, Bender and Koshland found that thiolsubtilisin was a poor enzymatic catalyst, reacting primarily with nitrophenyl esters of carboxylic acids and then not particularly effectively. While the observations they made did not appear to augur well for proposals to study newly introduced nucleophiles at enzyme active sites, we decided to try a somewhat different course in our work [7]. We felt that by the investigation of the reactions of appropriate labile substrates with enzyme active sites we might be able to elucidate the properties of newly introduced intramolecular nucleophiles formed by the cleavage of the substrate’s reactive bond accompanying enzyme-substrate covalent bond formation as illustrated inEq.(1)below. Here ZH is the enzyme-bound nucleophile in the native form and YH is the new nucleophile generated in the vicinity of the enzyme’s active site by reaction of the inhibitor’s X-Y bond with ZH.

Supported in part by NSF Grant GI-37992.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Polgar, L., Bender, M. L.: J. Amer. chem. Soc. 88, 3153 (1966).

    Article  CAS  Google Scholar 

  2. Polgar, L., Bender, M.L.: Biochemistry 6, 610 (1967).

    Article  PubMed  CAS  Google Scholar 

  3. Polgar, L., Bender, M.L.: Biochemistry 8, 136 (1969).

    Article  PubMed  CAS  Google Scholar 

  4. Philipp, M., Polgar, L., Bender, M.L.: In: Perlmann, G.E., Lorand, L. (Eds.): Methods in Enzymology, Vol. XIX, pp. 215–221. New York: Academic Press 1970.

    Google Scholar 

  5. Neet, K.E., Koshland, D.E. Jr.: Proc. nat. Acad. Sci. (Wash.) 56, 1606 (1966).

    Article  CAS  Google Scholar 

  6. Neet, K.E, Nanci, A., Koshland, D.E. Jr.: J. biol. Chem. 243, 6392 (1968).

    PubMed  CAS  Google Scholar 

  7. Kaiser, E.T.: Accounts Chem. Res. 3, 145 (1970) and references therein.

    Article  CAS  Google Scholar 

  8. Huber, R., Kukla, D., Rählmann, A., Steigemann, W.: In: Fritz, H., Tschesche, H. (Eds.) Proceedings of the International Research Conference on Proteinase Inhibitors, pp. 56–64. Berlin-New York: Walter de Gruyter 1971.

    Google Scholar 

  9. Rählmann, A., Schwager, P., Kukla, D., Bartels, K., Huber, R.: cf. this volume, p. 497.

    Google Scholar 

  10. Sweet, R.M., Janin, J., Blow, D.M.: This volume, p. 513.

    Google Scholar 

  11. Kaiser, E.T., Lee, T.W.S., Boer, F.P.: J. Amer. chem. Soc. 93, 2351 (1971).

    Article  CAS  Google Scholar 

  12. Tomalin, G., Trifunac, M., Kaiser, E.T.: J. Amer. chem. Soc. 91, 722 (1969).

    Article  CAS  Google Scholar 

  13. Campbell, P., Kaiser, E.T.: Biochem. Biophys. Res. Commun. 4, 866 (1972).

    Article  Google Scholar 

  14. Campbell, P., Kaiser, E.T.: J. Amer. chem. Soc. 95, 3735 (1973).

    Article  CAS  Google Scholar 

  15. Fahrney, D.E, Gold, A.M.: J. Amer. chem. Soc. 85, 997 (1963).

    Article  CAS  Google Scholar 

  16. Gold, A.M., Fahrney, D.: Biochemistry 3, 783 (1964).

    Article  PubMed  CAS  Google Scholar 

  17. Gold, A.M.: Biochemistry 5, 2911 (1966).

    Article  PubMed  CAS  Google Scholar 

  18. Campbell, P., Kaiser, E.T.: Bioorg. Chem. 1, 432 (1971).

    Article  CAS  Google Scholar 

  19. Heidema, J.H., Kaiser, E.T.: J. Amer. chem. Soc. 90, 1860 (1968).

    Article  CAS  Google Scholar 

  20. Whitaker, J.R., Perez-Villasenor, J.: Arch. Biochem. Biophys. 124, 70 (1968).

    Article  PubMed  CAS  Google Scholar 

  21. Kice, J.L., Cleveland, J.P.: J. Amer. chem. Soc. 95, 104 (1973) and references therein.

    Article  CAS  Google Scholar 

  22. Glazer, A.N.: Ann. Rev. Biochem. 39, 101 (1970).

    Article  PubMed  CAS  Google Scholar 

  23. Berg, W., Campbell, P, Kaiser, E.T.: J. Amer. chem. Soc. 94, 7933 (1972).

    Article  CAS  Google Scholar 

  24. Kaiser, E.T., Lo, K.-W., Kudo, K., Berg, W.: Bioorg. Chem. 1, 32 (1971).

    Article  CAS  Google Scholar 

  25. Campbell, P.: unpublished observations at the University of Chicago.

    Google Scholar 

  26. Olofson, R.A., Vander Meer, R.K., Storms, S.: J. Amer. chem. Soc. 93, 1543 (1971).

    Article  CAS  Google Scholar 

  27. Haugland, R.P., Stryer, L.: In: Ramacharandran, G.N. (Ed.): Conformation of Biopolymers, pp.321–335. New York: Academic Press 1967.

    Google Scholar 

  28. Laskowski, M., Jr., Sealock, J.W.: In: Boyer, P.D. (Ed.): The Enzymes, Vol.III, 3rd Ed., pp. 376–473. New York: Academic Press 1971.

    Google Scholar 

  29. Kezdy, F.J., Kaiser, E.T.: In: Perlmann, G.E., Lorand, L. (Eds.): Methods in Enzymology, Vol. XIX, pp. 3–20. New York: Academic Press 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag

About this paper

Cite this paper

Kaiser, E.T. (1974). Organic Chemical Models for Proteinase Inhibitors. In: Fritz, H., Tschesche, H., Greene, L.J., Truscheit, E. (eds) Proteinase Inhibitors. Bayer-Symposium, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87966-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87966-1_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87968-5

  • Online ISBN: 978-3-642-87966-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics