Skip to main content

Part of the book series: NATO ASI Series ((NATO ASI F,volume 33))

Abstract

This article reviews the basic concepts of computer vision, with emphasis on techniques that have been used, or could be used, in robot vision systems. Sections 2 and 3 discuss two- and three-dimensional vision systems, respectively, while Section 4 briefly discusses some other vision topics. References to basic papers or review papers are given in connection with each topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. G.J. Agin and R.O. Duda, “SRI vision research for advanced industrial automation”, Proceedings of the 2nd USA-Japan Computer Conference, Tokyo, Japan, 1975, 113–117.

    Google Scholar 

  2. E.M. Riseman and M.A. Arbib, “Computational techniques in the visual segmentation of static scenes”, Computer Graphics Image Processing 6, 1977, 221–276.

    Article  Google Scholar 

  3. T. Kanade, “Region segmentation: signal vs. semantics”, Computer Graphics Image Processing 13, 1980, 279–297.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Rosenfeld and L.S. Davis, “Image segmentation and image models”, Proc. IEEE 67, 1979, 764–772.

    Article  Google Scholar 

  5. A. Rosenfeld, ed., Image Modeling, Academic Press, New York, 1981.

    Google Scholar 

  6. J.M.S. Prewitt and M. Mendelsohn, “The analysis of cell images”, Annals N.Y Academy of Sciences 128, 1966, 1035–1053.

    Article  Google Scholar 

  7. C.K. Chow and T. Kaneko, “Boundary detection of radiographic images by a threshold method”, in S. Watanabe, ed., Frontiers of Pattern Recognition, Academic Press, New York, 1972, 61–82.

    Google Scholar 

  8. J.S. Weszka, “A survey of threshold selection techniques”, Computer Graphics Image Processing 7, 1978, 259–265.

    Article  Google Scholar 

  9. L.S.G. Kovasznay and H.M. Joseph, “Image processing”, Proc. IRE.48, 1955, 560–570.

    Google Scholar 

  10. L.G. Roberts, “Machine perception of three-dimensional solids”, in J.T. Tippett et al., eds., Optical and Electro-Optical Information Processing, MIT Press, Cambridge, MA, 1965, 159–197.

    Google Scholar 

  11. K.K. Pingle, “Visual perception by a computer”, in A. Grasselli, ed., Automatic Interpretation and Classification of Images, Academic Press, New York, 1969, 277–284.

    Google Scholar 

  12. J.M.S. Prewitt, “Object enhancement and extraction”, in B.S. Lipkin and A. Rosenfeld, eds., Picture Processing and Psychopictorics, Academic Press, New York, 1970, 75–149.

    Google Scholar 

  13. M. Hueckel, “An operator which locates edges in digital pictures”, J. ACM 18, 1971, 113–125.

    Article  MATH  Google Scholar 

  14. D. Marr and E. Hildreth, “Theory of edge detection”, Proc. Royal Soc. B207, 1980, 187–217.

    Google Scholar 

  15. L.S. Davis, “A survey of edge detection techniques”, Computer Graphics Image Processing 4, 1975, 248–270.

    Article  Google Scholar 

  16. R.M. Haralick, “Statistical and structural approaches to texture”, Proc. IEEE 67, 1979, 786–804.

    Article  Google Scholar 

  17. J.K. Hawkins, “Textural properties for pattern recognition”, in B.S. Lipkin and A. Rosenfeld, eds, Picture Processing and Psychopictorics, Academic Press, New York, 1970, 347–370.

    Google Scholar 

  18. A. Rosenfeld and M. Thurston, “Edge and curve detection by visual scene analysis”, IEEE Trans. Computers 20, 1971, 562–569.

    Article  Google Scholar 

  19. J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1982.

    MATH  Google Scholar 

  20. S.W. Zucker, “Region growing: childhood and adolescence”, Computer Graphics Image Processing 5, 1976, 382–399.

    Google Scholar 

  21. T. Pavlidis, Structural Pattern Recognition, Springer, Berlin, 1977.

    MATH  Google Scholar 

  22. A. Rosenfeld and J.L. Pfaltz, “Sequential operations in digital picture processing”, J. ACM 13, 1966, 471–494.

    Article  MATH  Google Scholar 

  23. A. Rosenfeld, “Connectivity in digital pictures”, J. ACM 17, 1970, 146–160.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Rosenfeld and J.L. Pfaltz, “Distance functions on digital pictures”, Pattern Recognition 1, 1968, 33–61.

    Article  MathSciNet  Google Scholar 

  25. P.E. Danielsson, “Euclidean distance mapping”, Computer Graphics Image Processing 1.4, 1980, 227–248.

    Google Scholar 

  26. J. Sklansky, “Recognition of convex blobs”, Pattern Recognition 2, 1970, 3–10.

    Article  Google Scholar 

  27. A. Rosenfeld, “Digital straight line segments”, IEEE Trans. Computers 23, 1974, 1264–1269.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Pavlidis, “Algorithms for shape analysis of contours and waveforms”, IEEE Trans. Pattern Analysis Machine Intelligence 2, 1980, 301–312.

    Article  Google Scholar 

  29. T. Pavlidis, “A review of algorithms for shape analysis”, Computer Graphics Image Processing 7, 1978, 243–258.

    Article  Google Scholar 

  30. M.K. Hu, “Visual pattern recognition by moment invariants”, IRE Trans. Information Theory 8, 1962, 179–187.

    MATH  Google Scholar 

  31. H. Freeman, “On the encoding of arbitrary geometric configurations”, IRE Trans. Electronic Computers 10, 1981, 260–268.

    Article  MathSciNet  Google Scholar 

  32. H. Freeman, “Computer processing of line-drawing images”, Computing Surveys 6, 1974, 57–97.

    Article  MATH  Google Scholar 

  33. H. Blum, “A transformation for extracting new descriptors of shape”, in W. Wathen-Dunn, ed., Models for the Perception of Speech and Visual Form, MIT Press, Cambridge, MA, 1967, 362–380.

    Google Scholar 

  34. H. Samet, “The quadtree and related hierarchical data structures”, Computing Surveys 16, 1984, 187–260.

    Article  MathSciNet  Google Scholar 

  35. H. Blum and R.N. Nagel, “Shape description using weighted symmetric axis features”, Pattern Recognition 10, 1978, 167–180.

    Article  MATH  Google Scholar 

  36. D.H. Ballard, “Strip trees: a hierarchical representation for curves”, Comm. ACM 24, 1981, 310–321.

    Article  Google Scholar 

  37. M.A. Fischler and R.A. Elschlager, “The representation and matching of pictorial structures”, IEEE Trans. Computers 22, 1973, 67–92.

    Article  Google Scholar 

  38. P.V.C. Hough, “Method and means for recognizing complex patterns”, U.S. Patent 3069654, Dec. 18, 1962.

    Google Scholar 

  39. R.O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures”, Comm. ACM 15, 1972, 11–15.

    Article  Google Scholar 

  40. D.H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes”, Pattern Recognition 13, 1981, 111–122.

    Article  MATH  Google Scholar 

  41. H.G. Barrow, A.P. Ambler, and R.M. Burstall, “Some techniques for recognizing structure in pictures”, in S. Watanabe, ed., Frontiers of Pattern Recognition, Academic Press, New York, 1972, 1–29.

    Google Scholar 

  42. K.S. Fu, Syntactic Methods in Pattern Recognition, Academic Press, New York, 1974.

    MATH  Google Scholar 

  43. K.S. Fu, Syntactic Pattern Recognition and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1982.

    MATH  Google Scholar 

  44. H.G. Barrow and J.M. Tenenbaum, “Recovering intrinsic scene characteristics from images”, in A.r. Hanson and E.M. Riseman, eds., Computer Vision Systems, Academic Press, New York, 1978, 3–26.

    Google Scholar 

  45. B. Horn, “Obtaining shape from shading information”, in P.H. Winston, ed., The Psychology of Computer Vision, McGraw-Hill, New York, 1975, 115–155.

    Google Scholar 

  46. B.K.P. Horn, “Understanding image intensities”, Artificial Intelligence 8, 1977, 201–231.

    Article  MATH  Google Scholar 

  47. K. Ikeuchi and B.K.P. Horn, “Numerical shape from shading and occluding boundaries”, Artificial Intelligence 17, 1981, 141–184.

    Article  Google Scholar 

  48. A.P. Witkin, “Recovering surface shape and orientation from texture”, Artificial Intelligence 17, 1981, 17–45.

    Article  Google Scholar 

  49. P.M. Will and K.S. Pennington, “Grid coding: a preprocessing technique for robot and machine vision”, Artificial Intelligence 2, 1971, 319–329.

    Article  Google Scholar 

  50. A. Guzman, “Decomposition of a visual scene into three-dimensional bodies”, in A. Grasselli, ed., Automatic Interpretation and Classification of Images, Academic Press, New York, 1969, 243–276.

    Google Scholar 

  51. D. Waltz, “Understanding line drawings of scenes with shadows”, in P.H. Winston, ed., The Psychology of Computer Vision, McGraw-Hill, New York, 1975, 19–91.

    Google Scholar 

  52. A.K. Mackworth, “Interpreting pictures of polyhedral scenes”, Artificial Intelligence 4, 1973, 121–137.

    Google Scholar 

  53. T. Kanade, “Recovery of the three-dimensional shape of an object from a single view”, Artificial Intelligence 17, 1981, 409–460.

    Article  Google Scholar 

  54. S.W. Draper, “The use of gradient and dual space in line-drawing interpretation”, Artificial Intelligence 17, 1981, 461–508.

    Article  Google Scholar 

  55. K.A. Stevens, “The visual interpretation of surface contours”, Artificial Intelligence 17, 1981, 47–73.

    Article  Google Scholar 

  56. H.G. Barrow and J.M. Tenenbaum, “Interpreting line drawings as three-dimensional surfaces”, Artificial Intelligence 17, 1981, 75–116.

    Article  Google Scholar 

  57. T.O. Binford, “Inferring surfaces from images”, Artificial Intelligence 17, 1981, 205–244.

    Article  Google Scholar 

  58. G.L. Hobrough, “Automation in photogrammetric instruments”, Photogram-metric Engineering 31, 1965, 595–603.

    Google Scholar 

  59. S.T. Barnard and M.A. Fischler, “Computational stereo”, Computing Surveys 14, 1982, 553–572.

    Article  Google Scholar 

  60. D. Marr and T. Poggio, “A computational theory of human stereo vision”, Proc. Royal Soc. B204, 1979, 301–328.

    Google Scholar 

  61. W.E.L. Grimson, From Images to Surfaces - A Computational Theory of the Human Early Visual System, MIT Press, Cambridge, MA, 1981.

    Google Scholar 

  62. J.E.W. Mayhew and J.P. Frisby, “Psychophysical and computational studies towards a theory of human stereopsis”, Artificial Intelligence 17, 1981, 349–385.

    Article  Google Scholar 

  63. R.J. Woodham, “Analysing images of curved surfaces”, Artificial Intelligence 17, 1981, 117–140.

    Google Scholar 

  64. Y. Shirai, “Recognition of polyhedrons with a range finder”, Pattern Recognition 4, 1972, 243–250.

    Article  Google Scholar 

  65. D. Nitzan, A.E. Brain, and R.O. Duda, “The measurement and use of registered reflectance and range data in scene analysis”, Proc. IEEE 65, 1977, 206–220.

    Article  Google Scholar 

  66. R.A. Jarvis, “A perspective on range finding techniques for computer vision”, IEEE Trans. Pattern Analysis Machine Intelligence 5, 1983, 122–139.

    Article  Google Scholar 

  67. H.K. Nishihara, “Intensity, visible-surface, and volumetric representations”, Artificial Intelligence 17, 1981, 265–284.

    Article  Google Scholar 

  68. R. Nevatia and T.O. Binford, “Description and recognition of curved objects”, Artificial Intelligence 8, 1977, 77–98.

    Article  MATH  Google Scholar 

  69. C.L. Jackins and S.L. Tanimoto, “Oct-trees and their use in representing three-dimensional objects”, Computer Graphics Image Processing 14, 1980, 249–270.

    Article  Google Scholar 

  70. A.A.G. Requicha, “Representations for rigid solids: theory, methods, and systems”, Computing Surveys 12, 1980, 437–464.

    Google Scholar 

  71. S.N. Srihari, “Representation of three-dimensional images”, Computing Surveys 13, 1981, 399–424.

    Google Scholar 

  72. R.A. Brooks, “Symbolic reasoning among 3-D models and 2-D images”, Artificial Intelligence 17, 1981, 285–348.

    Google Scholar 

  73. T.O. Binford, “Survey of model-based image analysis systems”, Intl. J. Robotics Research 1 (1), 1982, 18–64.

    Google Scholar 

  74. W.N. Martin and J.K. Aggarwal, “Dynamic scene analysis: a survey”, Computer Graphics Image Processing 7, 1978, 356–374.

    Article  Google Scholar 

  75. J.K. Aggarwal and N.I. Badler, guest eds., Special Issue on Motion and Time-Varying Imagery, IEEE Trans. Pattern Analysis Machine Intelligence 2, (6), November 1980, 493–588.

    Google Scholar 

  76. T.S. Huang, ed., Image Sequence Analysis, Springer, Berlin, 1981.

    MATH  Google Scholar 

  77. W.E. Snyder, guest ed., Special Issue on Computer Analysis of Time-Varying Images, Computer 14 (8), August 1981, 7–69.

    Google Scholar 

  78. T.S. Huang, ed., Image Sequence Processing and Dynamic Scene Analysis, Springer, Berlin, 1983.

    Google Scholar 

  79. J.K. Aggarwal, guest ed., Special Issues on Analysis of Time-Varying Imagery, Computer Vision, Graphics, Image Processing 21 (1,2), January and February 1983, 1–160, 167–293.

    Google Scholar 

  80. S. Ullman, The Interpretation of Visual Motion, MIT Press, Cambridge, MA, 1979.

    Google Scholar 

  81. E.C. Hildreth, Measurement of Visual Motion, MIT Press, Cambridge, MA, 1984.

    Google Scholar 

  82. L. Uhr, “Layered `recognition cone’ networks that preprocess, classify, and describe”, IEEE Trans. Computers 21, 1972, 758–768.

    Article  MATH  Google Scholar 

  83. S. Tanimoto and T. Pavlidis, “A hierarchical data structure for picture processing”, Computer Graphics Image Processing 4, 1975, 104–119.

    Article  Google Scholar 

  84. S. Tanimoto and A. Klinger, eds., Structured Computer Vision: Machine Perception through Hierarchical Computational Structures, Academic Press, New York, 1980.

    Google Scholar 

  85. A. Rosenfeld, ed., Multiresolution Image Processing and Analysis, Springer, Berlin, 1984.

    MATH  Google Scholar 

  86. L.G. Shapiro, “Data structures for picture processing: a survey”, Computer Graphics Image Processing 11, 1979, 162–184.

    Article  Google Scholar 

  87. A. Rosenfeld, R. Hummel, and S.W. Zucker, “Scene labeling by relaxation operations”, IEEE Trans. Systems, Man, Cybernetics 6, 1976, 420–433.

    Article  MathSciNet  MATH  Google Scholar 

  88. A. Rosenfeld, “Iterative methods in image analysis”, Pattern Recognition 10, 1978, 181–187.

    Article  Google Scholar 

  89. L.S. Davis and A. Rosenfeld, “Cooperating processes for low-level vision: a survey”, Artificial Intelligence 17, 1981, 245–263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosenfeld, A. (1987). Robot Vision. In: Wong, A.K.C., Pugh, A. (eds) Machine Intelligence and Knowledge Engineering for Robotic Applications. NATO ASI Series, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87387-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87387-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87389-8

  • Online ISBN: 978-3-642-87387-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics