Skip to main content

The Association of Cinnabar and Bitumen in Mercury Deposits of the California Coast Ranges

  • Chapter
Bitumens in Ore Deposits

Part of the book series: Special Publication of the Society for Geology Applied to Mineral Deposits ((MINERAL DEPOS.,volume 9))

Abstract

A review of the literature from around the world indicates that the association of bitumen and cinnabar in mercury deposits is widespread. Such deposits are commonly associated with sedimentary rocks; the compositions of igneous rocks in the vicinity of these deposits are highly variable, suggesting that anomolous heat rather than igneous rock type may be important to their formation. These deposits are commonly spatially coincident with anticlines or domes, which suggests that the focusing of buoyant fluids may be critical to their formation. The morphology of mercury ore bodies throughout the world is controlled by permeability, whether primary or secondary. On the deposit scale, mercury ore is spatially correlated with solid or liquid bitumens, or gas.

Within the USA, cinnabar-bitumen ore deposits are most prevalent in the California Coast Ranges. The variability of physical occurrence and chemical composition of bitumen is illustrated by samples of ore and gangue from nearly a dozen currently defunct mercury deposits. Common modes of occurrence for bitumen include: (a) clots and masses along the centers of silica and/or carbonate veins, (b) thin films along vein margins and/or crystal growth fronts, (c) masses within vugs of breccia veins, particularly along the hanging walls, (d) discrete microscopic fluid inclusions, (e) droplets within so-called “froth veins” of silica and/or carbonate, and (f) fine disseminations within siliceous sinter. At the hand-sample and microscopic scales, bitumen and cinnabar are spatially correlated. Bitumens are generally low in saturates and contain significant amounts of aromatics, NSOs, and asphaltenes. Some of the most abundant compounds have been identified as methylphenanthrenes, dimethylphenanthrenes, chrysene, methylchrysenes, benzofluoranthene(s), and benzopyrene(s). The range in carbon number of bitumens is typically small, possibly reflecting a process of natural fractionation arising from involvement in hydrothermal systems.

The chemical compositions of these bitumen samples strongly reflect the influence of thermal alteration. Results of recent shale retort experiments have shown that trace amounts of mercury in sedimentary rocks can be liberated to a gas phase in response to heating (Olsen et al. 1985). It is likely that the combination of high geothermal gradients, high fluid fluxes, and focusing of fluids all may have contributed to the generation, migration, and concentration of bitumen along with mercury in these deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander R, Kagi RI, Shepard PN (1983) Relative abundance of dimethylnapthalene isomers in crude oils. J Chromatog 267: 367–372

    Article  Google Scholar 

  • Averitt P (1945) Quicksilver deposits of the Knoxville District, Napa, Yolo, and Lake Counties, California. Calif J Mines Geol 41: 65–89

    Google Scholar 

  • Babkin PV, Klubov BA, Syromyaknikov AL, Fedotov DN (1971) Finds of bitumen in mercury occurrences in Chukotka. Dokl Akad Nauk SSR 198: 51–52

    Google Scholar 

  • Bailey EH (1946) Quicksilver deposits of the western Mayacamas District, Sonoma County, California. Calif J Mines Geol 42: 199–230

    Google Scholar 

  • Bailey EH (1959) Froth veins, formed by immiscible hydrothermal fluids, in mercury deposits, California. Geol Soc Am Bull 70: 661–663

    Article  Google Scholar 

  • Bailey EH, Everhart DL (1964) Geology and quicksilver deposits of the New Almaden district, Santa Clara County, California. US Geol Sury Prof Pap 360: 1–206

    Google Scholar 

  • Bailey EH, Clark AL, Smith RM (1973) United States Mineral Resources: Mercury. US Geol Sury Prof Pap 820: 401–414

    Google Scholar 

  • Bannikova LA (1981) Relation of isotopic composition and luminescence in calcite to the transformation of organic matter under hydrothermal conditions. Geochem Int 1981 18: 44–49

    Google Scholar 

  • Barnes I, O’Neill JR, Rapp JB, White DE (1973) Silica-carbonate alteration of serpentine; wall rock alteration in mercury deposits of the California Coast Ranges. Econ Geol 68: 388–398

    Article  Google Scholar 

  • Belous IR, Kirikilitsa SI, Levenshteyn M, Rodina EK, Florinskaya VN (1984) Occurrences of mercury in northwestern Donbass salt domes. Int Geol Rev 26: 573–582

    Article  Google Scholar 

  • Blumer M (1975) Curtisite, idrialite and pendletonite, polycyclic aromatic hydrocarbon minerals: their composition and origin. Chem Geol 16: 245–256

    Article  Google Scholar 

  • Bratus MD, Mamchur GP, Shabo ZV (1980) Hydrocarbon substances of the Transcarpathian mercury bearing province. Geol Zh (Russ Ed) 40: 104–111 (Engl Abstr)

    Google Scholar 

  • Colbertaldo D, Slavik S (1961) Il giacimento cinabrifero di Idria in Jugoslavia. Rend Soc Miner Ital 17: 301–327

    Google Scholar 

  • Connan J (1984) Biodegradation of crude oil in reservoirs. In: Brooks J, Weite D (eds) Advances in petroleum geochemistry, vol I. Academic Press, Orlando, pp 299–335

    Google Scholar 

  • Dickinson WR (1981) Plate tectonics and the continental margin of California. In: Ernst WG (ed) The geotectonic development of California, Rubey, vol I. Prentice-Hall, Englewood Cliffs, pp 1–28

    Google Scholar 

  • Dickinson WR, Seely DS (1979) Structure and stratigraphy of forearc regions. Am Assoc Pet Geol Bull 63: 2–31

    Google Scholar 

  • Dickinson WR, Snyder WS (1979) Geometry of triple junctions related to San Andreas transform. J Geophys Res 84: 561–572

    Article  Google Scholar 

  • Didenko AV, Zatishka BV, Prikhod’ko MG (1985) Carbon compounds and ore manifestations in Butovo (Transcarpathia) and their association with mercury-bearing ores [Eng abst].

    Google Scholar 

  • Dopov Akad Nauk Ukr RSR, Ser B, Geol, Knim Biol Nauki 2: 13–15

    Google Scholar 

  • Douglas AG, Mair BJ (1965) Sulfur: role in genesis of petroleum. Science 147: 499–501

    Article  Google Scholar 

  • Eckel EB, Meyers WB (1946) Quicksilver deposits of the New Idria District, San Benito and Fresno Counties, California. Calif J Mines Geol 42: 81–124

    Google Scholar 

  • Everhart DL (1950) Skaggs Springs quicksilver mine, Sonoma County, California. Calif J Mines Geol 46: 385–394

    Google Scholar 

  • Filby RH (1975) The nature of metals in petroleum. In: Yen TF (ed) The role of trace metals in petroleum. Ann Arbor Science, Ann Arbor, pp 31–58

    Google Scholar 

  • Fox Jr KF, Fleck RJ, Curtis GH, Meyer CE (1985) Implications of the northwestwardly younger age of the volcanic rocks of west-central California. Geol Soc Am Bull 96: 647–654

    Article  Google Scholar 

  • Germanov AI, Bannikova LA (1972) Formation characteristics of mercury bitumen-containing deposits in the Krasnodar region Sov Geol 15:144–148 (Engl Abstr)

    Google Scholar 

  • Gorchakov PN, Khomyakov AP, Shatskaya NS (1981) Karpatite and idrialite as typomorphic minerals of tungsten-mercury ores in the Tamvanei deposit (Chukchi) Dokl Akad Nauk SSSR 257:432–435 (Engl Abstr)

    Google Scholar 

  • Henderson III FB (1969) Hydrothermal alteration and ore deposition in serpentinite-type mercury deposits. Econ Geol 64: 489–499

    Article  Google Scholar 

  • Hernandez AM (1984) Estructura y genesis de los yacimientos de mercurio de ‘la zona de Almaden. Thesis, Univ de Salamanca, Salamanca

    Google Scholar 

  • Hitchon B, Filby RH (1983) Geochemical studies-1, Trace elements in Alberta crude oils. Alberta Research Council Open File Report, 1983–02

    Google Scholar 

  • Lehrman NJ (1986) The McLaughlin Mine; Napa and Yolo Counties, California. In: Tingley JV, Bonham Jr HF (eds) Precious-metal mineralization in hot spring systems, Nevada-California. Univ Nevada, Reno, pp 85–89

    Google Scholar 

  • Linn RK (1968) The New Idria mining district. In: Ridge JD (ed) Ore deposits of the United States, 1933–1967 (Graton-Sales, vol II ). Am Inst Mining Metall Petroleum Engineers, New York, pp 1623–1649

    Google Scholar 

  • Livitskii VV, Demin BG, Khrenov PM, Baburin LM, Razvozzhaeva EA (1984) Periodicity of mineral and organometallic compounds in ore-and petroleum-formation processes. Sov Geol 7: 87–96 (Engl Abstr)

    Google Scholar 

  • Lubinetskaya AV, Zatsikha BV, Shabo ZV, Mamchur GP (1980) Nature and genetic features of organic minerals and matter of the Slaviansk mercury deposit mineralization. Miner Sb (Lvov) 34: 32–39 (Engl Abstr)

    Google Scholar 

  • Mackenzie AS, Brassell SC, Eglinton G, Maxwell JR (1982) Chemical fossils: the geological fate of steroids. Science 217: 491–504

    Article  Google Scholar 

  • Mackenzie AS, McKenzie D (1983) Isomerisation and aromatisation of hydrocarbons in sedimentary basins formed by extension. Geol Mag 120: 417–470

    Article  Google Scholar 

  • Moiseyev AN (1968) The Wilbur Springs quicksilver district (California); example of a study of hydrothermal processes by combining field geology and theoretical geochemistry. Econ Geol 63: 169–181

    Article  Google Scholar 

  • Moiseyev AN (1971) A non-magmatic source for mercury ore deposits? Econ Geol 66:591–601 Moisseeff AN ( 1966 ) The geology and geochemistry of the Wilbur Springs quicksilver district, Colusa and Lake Counties, California. Thesis, Stanford University, Stanford

    Google Scholar 

  • Olsen KB, Evans JC, Sklarew DS, Girvin DC, Nelson CL, Lepel EA, Robertson DE, Sanders RW (1985) Characterization of mercury, arsenic, and selenium in the product streams of the Pacific Northwest Laboratory 6-kg retort. Batelle Lab Tech Rep PNL-5658, Richland, Washington, 45 pp

    Chapter  Google Scholar 

  • Ozerova N (1985) Sources of basic ore-forming elements in the mercury-antimony deposits. Geol Zb Geol Carpathica 36: 411–419

    Google Scholar 

  • Peabody CE (1990) Association of petroleum and cinnabar in mercury deposits of the California Coast Ranges, USA. Thesis, Stanford University, Stanford

    Google Scholar 

  • Peabody CE, Einaudi MT (1992) Origin of petroleum and mercury in the Culver-Baer cinnabar deposit, Mayacmas district, California. Econ Geol 87: 1078–1103

    Google Scholar 

  • Pearcy EC, Petersen U (1990) Mineralogy, geochemistry and alteration of the Cherry Hill, California hot spring gold deposit. J Geochem Explor 36: 143–169

    Google Scholar 

  • Pering KL (1971) A geochemical evaluation of hydrocarbon characteristics as criteria for the abiogenic origin of naturally occurring organic matter. Thesis, Stanford University, Stanford

    Google Scholar 

  • Radke M, Welte DH (1983) The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons. Adv Org Geochem 1981: 504–512

    Google Scholar 

  • Saupe F (1967) Note preliminaire concernant la genese du gisement de mercure d’Almaden (Province de Ciudad Real, Espagne). Mineral Deposita 2: 26–33

    Article  Google Scholar 

  • Saupe F (1973) La geologie du gisement du mercure d’Almaden (Province de Ciudad Real, Espagne). Sci Terre 29: 1–342

    Google Scholar 

  • Saupe F (1990) Geology of the Almaden mercury deposit, Province of Ciudad Real, Spain. Econ Geol 85: 482–510

    Article  Google Scholar 

  • Schneiderhohn H (1941) Lehrbuch der Erzlagerstättenkunde, vol 1. Jena

    Google Scholar 

  • Schoell M (1984) Stable isotopes in petroleum research. In: Brooks J, Welte D (eds) Advances in Petroleum Geochemistry, vol 1. Academic Press, Orlando, pp 215–246

    Google Scholar 

  • Schrocke H (1972) Über die Bildung von Quecksilberlagerstätten aus magmatischen Gasen. Der Aufschluss 5: 139–143

    Google Scholar 

  • Seifert WK, Moldowan JM (1980) The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979, pp 229–237

    Google Scholar 

  • Shabo ZV, Alekseeva NI, Mamchur GP, Manzhar NI (1982) Organic compounds of the Slavyansk ore occurrence (USSR) and their relation to endogenic mineral formation. Geol Rudn Mestorozhd 24: 63–73 (Engl Abstr)

    Google Scholar 

  • Sharbatyan PA, Milovskiy AV, Lobanova GM (1975) Bituminoids and mercury-organic compounds in ore shows of cinnabar. Int Geol Rev 18: 1453–1456

    Article  Google Scholar 

  • Sims JD, White DE (1981) Mercury in the sediments of Clear Lake. US Geol Sury Prof Pap 1141: 237–241

    Google Scholar 

  • Smirnov VI (1977) Ore deposits of the USSR, vol II. Pitman, London

    Google Scholar 

  • Stahl WJ (1977) Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chem Geol 20: 121–149

    Article  Google Scholar 

  • Stanley R (1987) Implications of the northwestwardly younger age of the volcanic rocks of west-central California: alternative interpretation. Geol Soc Am Bull 98: 612–614

    Article  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Umbgrove JHF (1947) The pulse of the Earth. Martinus Nijoff, The Haag, 358 pp

    Google Scholar 

  • Vershkovskaya OV, Pikovskiy YI, Solov’yev AA (1971) Dispersed carbonaceous material in rocks and ores of the Plammenoye antimony-mercury deposit. Dokl Akad Nauk SSR 205: 220–222

    Google Scholar 

  • Vershkovskaya OV, Pikovskii YI, Krapiva LY, Kravchenko LG (1975) Relation between carbonaceous substances and antimony-mercury mineralization. In: Florovskaya V (ed)Lvumin Bituminologiva. N Mosk Univ, Moscow, pp 147–155, 186–191 (Engl Abstr)

    Google Scholar 

  • Vredenburgh LM (1982) Tertiary gold-bearing mercury deposits of the Coast Ranges of California.Calif Geol 35: 23–27

    Google Scholar 

  • Wells JT, Ghiorso MS (1988) Rock alteration, mercury transport, and metal deposition at Sulphur Bank, California. Econ Geol 83: 606–618

    Google Scholar 

  • White DE (1967) Mercury and base-metal deposits with associated thermal and mineral waters. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Rinehart, and Winston, New York, pp 575–631

    Google Scholar 

  • White DE, Barnes I, O’Neil JR (1973) Thermal and mineral waters of nonmeteoric origin, California Coast Ranges. Geol Soc Am Bull 84: 547–560

    Google Scholar 

  • Wise SA, Campbell RM, West WR, Lee ML, Bartle KD (1986) Characterization of polycyclic aromatic hydrocarbon minerals curtisite, idrialite, and pendletonite using high-performance liquid chromatography, gas chromatography, mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Geol 54: 339–357

    Article  Google Scholar 

  • Yates RG, Concha JF (1951) Geology of the Huancavelica quicksilver district, Peru. US Geol Sury Bull 975-A: 1–45

    Google Scholar 

  • Yates RG, Thompson GA (1959) Geology and quicksilver deposits of the Terlingua district, Texas. US Geol Sury Prof Pap 312: 1–114

    Google Scholar 

  • Zatsikha BV, Zaitseva VN (1984) Typomorphism of the major minerals and genetic characteristics of the formation of mercury ores in the Borkut deposit. Miner Sb (Lvov) 38: 62–73 (Engl Abstr)

    Google Scholar 

  • Zhang B, Liang W (1984) Strata-bound mercury ore deposits in carbonate strata in China. Sci Sin, Ser B (Engl Ed) 27: 199–209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peabody, C.E. (1993). The Association of Cinnabar and Bitumen in Mercury Deposits of the California Coast Ranges. In: Parnell, J., Kucha, H., Landais, P. (eds) Bitumens in Ore Deposits. Special Publication of the Society for Geology Applied to Mineral Deposits, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85806-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85806-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85808-6

  • Online ISBN: 978-3-642-85806-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics