Skip to main content

Regulation of Expression and Pathogenic Potential of Human Foamy Virus In Vitro and in Transgenic Mice

  • Chapter
Transgenic Models of Human Viral and Immunological Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 206))

Abstract

Increasing scientific interest in the foamy virus subgroup of retroviruses during the last few years has been due to two discoveries; (1) the molecular biology of foamy viruses shows some close similarities to that of lentiviruses and of the HTLV/BLV group of retroviruses, in addition to some features which set the foamy viruses apart from all other retroviruses. Moreover (2), transgenic mouse systems demonstrated for the first time a pathogenic potential of foamy viruses, i.e., induction of a fatal encephalopathy and myopathy in mice expressing various combinations of foamy virus genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achong BG, Epstein MA (1978) Preliminary seroepidemiological studies on the human syncytial virus. J Gen Virol 40: 175–181

    PubMed  CAS  Google Scholar 

  • Achong BG, Mansell PW, Epstein MA, Clifford P (1971) An unusual virus in cultures from a human nasopharyngeal carcinoma. J Natl Cancer Inst 46: 299–307

    PubMed  CAS  Google Scholar 

  • Aguzzi A (1993) The foamy virus family: molecular biology, epidemiology and neuropathology. Biochim Biophys Acta 1155: 1–24

    PubMed  CAS  Google Scholar 

  • Aguzzi A, Theuring F (1994) An improved in situ beta-galactosidase staining for histological analysis of transgenic mice. Histochemistry 102: 477–481

    PubMed  CAS  Google Scholar 

  • Aguzzi A, Wagner EF, Williams RL, Courtneidge SA (1990) Sympathetic hyperplasia and neuro-blastomas in transgenic mice expressing polyoma middle T antigen. New Biol 2: 533–543

    PubMed  CAS  Google Scholar 

  • Aguzzi A, Kleihues P, Heckl K, Wiestier OD (1991) Cell-type specific tumor induction by oncogenes in fetal forebrains transplants. Oncogene 6: 113–118

    PubMed  CAS  Google Scholar 

  • Aguzzi A, Bothe K, Anhauser I, Horak I, Rethwilm A, Wagner EF (1992a) Expression of human foamy virus is differentially regulated during development in transgenic mice. New Biol 4: 225–237

    PubMed  CAS  Google Scholar 

  • Aguzzi A, Ellmeier W, Weith A (1992b) Dominant and recessive molecular changes in neuroblastoma. Brain Pathol 2: 195–208

    PubMed  CAS  Google Scholar 

  • Aguzzi A, Brandner S, Sure U, Rüedi D, Isenmann S (1994) Transgenic and knock-out mice: models of neurological disease. Brain Pathol 4: 3–20

    PubMed  CAS  Google Scholar 

  • Amborski GF, Storz J, Keney D, Lo J, McChesney AE (1987) Isolation of a retrovirus from the American bison and its relation to bovine retroviruses. J Wildl Dis 23: 7–11

    PubMed  CAS  Google Scholar 

  • Bartholoma A, Muranyi W, Flügel RM (1992) Bacterial expression of the capsid antigen domain and identification of native gag proteins in spumavirus-infected cells. Virus Res 23: 27–38

    PubMed  CAS  Google Scholar 

  • Baunach G, Maurer B, Hahn H, Kranz M, Rethwilm A (1993) Functional analysis of human foamy virus accessory reading frames. J Virol 67: 5411–5418

    PubMed  CAS  Google Scholar 

  • Blair WS, Bogerd H, Cullen BR (1994) Genetic analysis indicates that the human foamy virus Bel-1 protein contains a transcription activation domain of the acidic class. J Virol 68: 3803–3808

    PubMed  CAS  Google Scholar 

  • Bosch ML, Earl PL, Fargnoli K, Picciafuoco S, Giombini F, Wong Staal F, Franchini G (1989) Identification of the fusion peptide of primate immunodeficiency viruses. Science 244: 694–697

    PubMed  CAS  Google Scholar 

  • Bothe K, Aguzzi A, Lassmann H, Rethwilm A, Horak I (1991) Progressive encephalopathy and myopathy in transgenic mice expressing human foamy virus genes. Science 253: 555–557

    PubMed  CAS  Google Scholar 

  • Brenner TJ, Dahl KE, Olson B, Miller G, Andiman WA (1991) Relation between HIV-1 syncytium inhibition antibodies and clinical outcome in children. Lancet 337: 1001–1005

    PubMed  CAS  Google Scholar 

  • Brown P, Nemo G, Gajdusek DC (1978) Human foamy virus: further characterization, seroepi-demiology, and relationship to chimpanzee foamy viruses. J Infect Dis 137: 421–427

    PubMed  CAS  Google Scholar 

  • Brown P, Moreau-Dubois MC, Gajdusek DC (1982) Persistent asymptomatic infection of the laboratory mouse by simian foamy virus type 6: a new model of retrovirus latency. Arch Virol 71: 229–234

    PubMed  CAS  Google Scholar 

  • Budka H (1986) Multinucleated giant cells in brain: a hallmark of the acquired immune deficiency syndrome (AIDS). Acta Neuropathol (Berl) 69: 253–258

    CAS  Google Scholar 

  • Camerini D, Seed B (1990) A CD4 domain important for HIV-mediated syncytium formation lies outside the virus binding site. Cell 60: 747–754

    PubMed  CAS  Google Scholar 

  • Cameron KR, Birchall SM, Moses MA (1978) Isolation of foamy virus from patient with dialysis encephalopathy. Lancet 2: 79666

    Google Scholar 

  • Campbell M, Renshaw Gegg L, Renne R, Luciw PA (1994) Characterization of the internal promoter of simian foamy viruses. J Virol 68: 4811–4820

    PubMed  CAS  Google Scholar 

  • Cavard C, Zider A, Vernet M, Bennoun M, Saragosti S, Grimber G, Briand P (1990) In vivo activation by ultraviolet rays of the human immunodeficiency virus type 1 long terminal repeat. J Clin Invest 86: 1369–1374

    PubMed  CAS  Google Scholar 

  • Cullen BR (1991) Human immunodeficiency virus as a prototypic complex retrovirus. J Virol 65: 1053–1056

    PubMed  CAS  Google Scholar 

  • Davis MG, Kenney SC, Kamine J, Pagano JS, Huang ES (1987) Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus. Proc Natl Acad Sci USA 84: 8642–8646

    PubMed  CAS  Google Scholar 

  • Doolittle RF, Feng DF, McClure MA, Johnson MS (1990) Retrovirus phylogeny and evolution. Curr Top Microbiol Immunol 157: 1–18

    PubMed  CAS  Google Scholar 

  • Elliott JF, Pohajdak B, Talbot DJ, Shaw J, Paetkau V (1988) Phorbol diester-inducible, cyclosporine-suppressible transcription from a novel promoter within the mouse mammary tumor virus env gene. J Virol 62: 1373–1380

    PubMed  CAS  Google Scholar 

  • Erlwein O, Rethwilm A (1993) Bel-1 transactivator responsive sequences in the long terminal repeat of human foamy virus. Virology 196: 256–268

    PubMed  CAS  Google Scholar 

  • European Collaborative Study (1991) Children born to women with HIV-1 infection: natural history and risk of transmission. Lancet 337: 253–260

    Google Scholar 

  • Flügel RM, Rethwilm A, Maurer B, Darai G (1987) Nucleotide sequence analysis of the env gene and its flanking regions of the human spumaretrovirus reveals two novel genes. EMBO J 6: 2077–2084

    PubMed  Google Scholar 

  • Freed EO, Myers DJ, Risser R (1990) Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoproteinai] gp41. Proc Natl Acad Sci USA 87: 4650–4654

    PubMed  CAS  Google Scholar 

  • Gallaher WR (1987) Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell 50: 327–328

    PubMed  CAS  Google Scholar 

  • Garrett ED, He F, Bogerd HP, Cullen BR (1993) Transcriptional trans activators of human and simian foamy viruses contain a small, highly conserved activation domain. J Virol 67: 6824–6827

    PubMed  CAS  Google Scholar 

  • Gendelman HE, Phelps W, Feigenbaum L, Ostrove JM, Adachi A, Howley PM, Khoury G, Ginsberg HS, Martin MA (1986) Trans-activation of the huan immunodeficiency virus long terminal repeat sequence by DNA viruses. Proc Natl Acad Sci USA 83: 9759–9763

    PubMed  CAS  Google Scholar 

  • Giangaspero F, Scanabissi E, Baldacci MC, Betts CM (1989) Massive neuronal destruetiona in human immunodeficiency virus (HIV) encephalitis. A clinico-pathological study of a pédiatrie case. Acta Neuropathol (Berl) 78: 662–665

    PubMed  CAS  Google Scholar 

  • Gonzales MF, Davis RL (1988) Neuropathology of acquired immunodeficiency syndrome. Neuropathol Appl Neurobiol 14: 345–363

    PubMed  CAS  Google Scholar 

  • Gourdou I, Mabrouk K, Harkiss G, Marchot P, Watt N, Hery F, Vigne R (1990) Neurotoxicity in mice due to cysteine-rich parts of visna virus and HIV-1 Tat proteins. C R Acad Sci [III] 311: 149–155

    CAS  Google Scholar 

  • Green JE, Begley CG, Wagner DK, Waldmann TA, Jay G (1989) trans activation of granulocyte-macrophage colony-stimulating factor and the interleukin-2 receptor in transgenic mice carrying the human T-lymphotropic virus type 1 tax gene. Mol Cell Biol 9: 4731–4737

    PubMed  CAS  Google Scholar 

  • Gunzburg WH, Heinemann F, Wintersperger S, Miethke T, Wagner H, Erfle V, Salmons B (1993) Endogenous superantigen expression controlled by a novel promoter in the MMTV long terminal repeat. Nature 364: 154–158

    PubMed  CAS  Google Scholar 

  • Hahn H, Baunach G, Bräutigam S, Mergia A, Neumann-Haefelin D, Daniel MD, McClure MO, Rethwilm A (1994) Reactivity of primate sera to foamy virus gag and bet proteins. J Gen Virol 75: 2635–2644

    PubMed  CAS  Google Scholar 

  • He F, Sun JD, Garrett ED, Cullen BR (1993) Functional organization of the Bel-1 trans activator of human foamy virus. J Virol 67: 1896–1904

    PubMed  CAS  Google Scholar 

  • Herchenröder O, Renne R, Loncar D, Cobb EK, Murthy KK, Schneider J, Mergia A, Luciw PA (1994) Isolation, cloning, and sequencing of simian foamy viruses from chimpanzees (SFVcpz): high homology to human foamy virus (HFV). Virology 201: 187–199

    PubMed  Google Scholar 

  • Hildreth JE, Orentas RJ (1989) Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation. Science 244: 1075–1078

    PubMed  CAS  Google Scholar 

  • Hinrichs SH, Nerenberg M, Reynolds RK, Khoury G, Jay G (1987) A transgenic mouse model for human neurofibromatosis. Science 237: 1340–1343

    Google Scholar 

  • Hogan B, Constantini F, Lacy E (1986) Manipulating the mouse embryo. A laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Hooks JJ, Gibbs CJ Jr (1975) The foamy viruses. Bacteriol Rev 39: 169–185

    PubMed  CAS  Google Scholar 

  • Hook JJ, Gibbs CJ Jr, Cutchins EC, Rogers NG, Lampert P, Gajdusek DC (1972) Characterization and distribution of two new foamy viruses isolated from chimpanzees. Arch Gesamte Virusforsch 38: 38–55

    Google Scholar 

  • Hooks JJ, Burns W, Hayashi K, Geis S, Notkins AL (1976) Viral spread in the presence of neutralizing antibody: mechanisms of persistence in foamy virus infection. Infect Immun 14: 1172–1181

    PubMed  CAS  Google Scholar 

  • Horth M, Lambrecht B, Chuah Lay Khim M, Bex F, Thiriart C, Ruysschaert JM, Burny A, Brasseur R (1991) Theoretical and functional analysis of the SIV fusion peptide. EMBO J 10: 2747–2755

    PubMed  CAS  Google Scholar 

  • Keller A, Partin KM, Löchelt M, Bannert H, Flügel RM, Cullen BR (1991) Characterization of the transcriptional trans activator of human foamy retrovirus. J Virol 65: 2589–2594

    PubMed  CAS  Google Scholar 

  • Keller A, Garrett ED, Cullen BR (1992) The Bel-1 protein of human foamy virus activates human immunodeficiency virus type 1 gene expression via a novel DNA target site. J Virol 66: 3946–3949

    PubMed  CAS  Google Scholar 

  • Kennedy-Stoskopf S, Stoskopf MK, Eckhaus MA, Strandberg JD (1986) Isolation of a retrovirus and a herpesvirus from a captive California sea lion. J Wildl Dis 22: 156–164

    PubMed  CAS  Google Scholar 

  • Kleihues P, Lang W, Burger PC, Budka H, Vogt M, Maurer R, Lüthy R, Siegenthaler W (1985) Progressive diffuse leukoencephalopathy in patients with acquired immunodeficiency syndrome (AIDS). Acta Neuropathol (Berl) 333: 339

    Google Scholar 

  • Kupiec JJ, Kay A, Hayat M, Ravier R, Peries J, Galibert F (1991) Sequence analysis of the simian foamy virus type 1 genome. Gene 101: 185–194

    PubMed  CAS  Google Scholar 

  • Lagaye S, Vexiau P, Morozov V, Guenebaut-Claudet V, Tobaly-Tapiero J, Canivet M, Cathelineau G, Peries J, Emanoil-Ravier R (1992) Human spumaretrovirus-related sequences in the DNA of leukocytes from patients with Graves’ disease. Proc Natl Acad Sci USA 89: 10070–10074

    PubMed  CAS  Google Scholar 

  • Landau NR, Page KA, Littman DR (1991) Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J Virol 65: 162–169

    PubMed  CAS  Google Scholar 

  • Le Guern M, Levy JA (1992) Human immunodeficiency virus (HIV) type 1 can superinfect HIV-2 infected cells. Pseudotypes virions produced with expanded cellular host range. Proc Natl Acad USA 89: 363–367

    Google Scholar 

  • Lee AH, Lee KJ, Kim S, Sung YC (1992) Transactivation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by the human foamy virus bell protein requires a specific DNA sequence. J Virol 66: 3236–3240

    PubMed  CAS  Google Scholar 

  • Lee CW, Chang J, Lee KJ, Sung YC (1994) The Bell protein of human foamy virus contains one positive and two negative control regions which regulate a distinct activation domain of 30 amino acids. J Virol 68: 2708–2719

    PubMed  CAS  Google Scholar 

  • Lee KJ, Lee AH, Sung YC (1993) Multiple positive and negative cis-acting elements that mediate transactivation by bell in the long terminal repeat of human foamy virus. J Virol 67: 2317–2326

    PubMed  CAS  Google Scholar 

  • Leonard JM, Abramczuk JW, Pezen DS, Rutledge R, Belcher JH, Hakim F, Shearer G, Lamperth L, Travis W, Fredrickson T, Notkins AL, Martin MA (1988) Development of disease and virus recovery in transgenic mice containing HIV proviral DNA. Science 242: 1665–1670

    PubMed  CAS  Google Scholar 

  • Lewis SH, Reynolds-Kohier C, for HE, Nelson JA (1990) HIV-1 in trophoblastic and villous Hofbauer cells, and haematological precursors in eight-week fetuses. Lancet 335: 565–568

    PubMed  CAS  Google Scholar 

  • Löchelt M, Zentgraf H, Flügel RM (1991) Construction of an infectious DNA clone of the full length human spumaretrovirus genome and mutagenesis of the bel-1 gene. Virology 184: 34–54

    Google Scholar 

  • Löchelt M, Aboud M, Flügel RM (1993) Increase in the basal transcriptional activity of the human foamy virus internal promoter by the homologous long terminal repeat promoter in cis. Nucleic Acids Res 21: 4226–4230

    PubMed  Google Scholar 

  • Löchelt M, Flügel RM, Aboud M (1994) The human foamy virus internal promoter directs the expression of the functional Bel 1 transactivator and Bet protein early after infection. J Virol 68: 638–645

    PubMed  Google Scholar 

  • Loh P (1993) Spumavirinae. In: Levy J (ed) The retroviridae. Plenum, New York, pp 361–397

    Google Scholar 

  • Loh PC, Achong BG, Epstein MA (1977) Further biological properties of the human syncytial virus. Intervirology 8: 204–217

    PubMed  CAS  Google Scholar 

  • Loh PC, Matsuura F, Mizumoto C (1980) Seroepidemiology of human syncytial virus: antibody prevalence in the Pacific. Intervirology 13: 87–90

    PubMed  CAS  Google Scholar 

  • Lusso P, Ensoli B, Markham PD, Ablashi DV, Salahuddin SZ, Tschachler E, Wong-Staal F, Gallo RC (1989) Productive dual infection of human CD4+ T lymphocytes by HIV-1 and HHV-6. Nature 337: 370–373

    PubMed  CAS  Google Scholar 

  • Lusso P, De Maria A, Malnati M, Lori F, DeRocco SE, Baseler M, Gallo RC (1991) Induction of CD4 and susceptibility to HIV-1 infection in human CD8+ T lymphocytes by human herpesvirus 6. Nature 349: 533–535

    PubMed  CAS  Google Scholar 

  • Mahnke C, Löchelt M, Bannert H, Flügel RM (1990) Specific enzyme-linked immunosorbent assay for the detection of antibodies to the human spumavirus. J Virol Methods 29: 13–22

    PubMed  CAS  Google Scholar 

  • Mahnké C, Kashaiya P, Rössler J, Bannert H, Levin A, Blattner WA, Dietrich M, Luande J, Löchelt M, Friedman-Kien A, Komaroff AL, Loh PC, Westarp ME, Flügel RM (1992) Human spumavirus antibodies in sera from african patients. Arch Virol 123: 243–253

    PubMed  Google Scholar 

  • Maier H, Budka H, Lassmann H, Pohl P (1989) Vacuolar myelopathy with multinucleated giant cells in the acquired immune deficiency syndrome (AIDS). Light and electron microscopic distribution of human immunodeficiency virus (HIV) antigens. Acta Neuropathol (Berl) 78: 497–503

    CAS  Google Scholar 

  • Maurer B, Bannert H, Darai G, Flügel RM (1988) Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus. J Virol 62: 1590–1597

    PubMed  CAS  Google Scholar 

  • McClure MO, Bienasz PD, Schulz TF, Chrystie IL, Simpson G, Aguzzi A, Hoad JG, Cunningham A, Kirkwood J, Weiss RA (1994) Isolation of a new foamy virus from orangutans. J Virol 68: 7124–7130

    PubMed  CAS  Google Scholar 

  • Mergia A (1994) Simian foamy virus type 1 contains a second promoter located at the 3′ end of the env gene. Virology 199: 219–222

    PubMed  CAS  Google Scholar 

  • Mergia A, Luciw PA (1991) Replication and regulation of primate foamy viruses. Virology 184: 475–482

    PubMed  CAS  Google Scholar 

  • Mergia A, Pratt Lowe E, Shaw KE, Renshaw Gegg LW, Luciw PA (1992) cis-acting regulatory regions in the long terminal repeat of simian foamy virus type 1. J Virol 66: 251–257

    PubMed  CAS  Google Scholar 

  • Mergia A, Renshaw Gegg LW, Stout MW, Renne R, Herchenröder O (1993) Functional domains of the simian foamy virus type 1 transcriptional transactivator (Taf). J Virol 67: 4598–4604

    PubMed  CAS  Google Scholar 

  • Miller CL, Garner R, Paetkau V (1992) An activation-dependent, T-lymphocyte-specific transcriptional activator in the mouse mammary tumor virus env gene. Mol Cell Biol 12: 3262–3272

    PubMed  CAS  Google Scholar 

  • Mosca JD, Bednarik DP, Raj NBK, Rosen CA, Sodroski JG, Haseltine WA, Pitha PM (1987) Herpes simplex virus type-1 can reactivate transcription of latent human immunodeficiency virus. Nature 325: 67–70

    PubMed  CAS  Google Scholar 

  • Müller HK, Ball G, Epstein MA, Achong BG, Lenoir G, Levin A (1980) The prevalence of naturally occurring antibodies to human syncytial virus in East African populations. J Gen Virol 47: 399–406

    PubMed  Google Scholar 

  • Muranyi W, Flügel RM (1991) Analysis of splicing patterns of human spumaretrovirus by polymerase chain reaction reveals complex RNA structures. J Virol 65: 727–735

    PubMed  CAS  Google Scholar 

  • Nara PL, Robey WG, Arthur LO, Gonda MA, Asher DM, Yanagihara R, Gibbs CJ Jr, Gajdusek DC, Fischinger PJ (1987) Simultaneous isolation of simian foamy virus and HTLV-III/LAV from chimpanzee lymphocytes following HTLV-III or LAV inoculation. Arch Virol 92: 183–186

    PubMed  CAS  Google Scholar 

  • Nerenberg ML, Wiley CA (1989) Degeneration of oxidative muscle fibers in HTLV-1 tax transgenic mice. Am J Pathol 135: 1025–1033

    PubMed  CAS  Google Scholar 

  • Nerenberg M, Hinrichs SH, Reynolds RK, Khoury G, Jay G (1987) The tat gene of human T-lympho-tropic virus type 1 induces mesenchymal tumors in transgenic mice. Science 237: 1324–1329

    PubMed  CAS  Google Scholar 

  • Netzer KO, Rethwilm A, Maurer B, Ter Meulen V (1990) Identification of the major immunogenic structural proteins of human foamy virus. J Gen Virol 71: 1237–1241

    PubMed  CAS  Google Scholar 

  • Neumann-Haefelin D, Rethwilm A, Bauer G, Gudat F, Zur Hausen H (1983) Characterization of a foamy virus isolated from Cercopithecus aethiops lymphoblastoid cells. Med Microbiol Immunol (Berl) 172: 75–86

    CAS  Google Scholar 

  • Neumann-Haefelin D, Fleps U, Renne R, Schweizer M (1993) Foamy viruses. Intervirology 35: 196–207

    PubMed  CAS  Google Scholar 

  • Nosaka T, Ariumi Y, Sakurai M, Takeuchi R, Hatanaka M (1993) Novel internal promoter/enhancer of HTLV-I for Tax expression. Nucleic Acids Res 21: 5124–5129

    PubMed  CAS  Google Scholar 

  • Pantaleo G, Poli G, Butini L, Fox C, Dayton Al, Fauci AS (1991) Dissociation between syncytia formation and HIV spreading. Suppression of syncytia formation does not necessarily reflect inhibition of HIV infection. Eur J Immunol 21: 1771–1774

    PubMed  CAS  Google Scholar 

  • Petito CK (1988) Review of central nervous system pathology in human immunodeficiency virus infection. Ann Neurol 23 Suppl: S54–S57

    PubMed  Google Scholar 

  • Petito CK, Navia BA, Cho ES, Jordan BD, George DC, Price RW (1985) Vacuolar myelopathy pathologically resembling subacute combined degeneration in patients with the acquired immunodeficiency syndrome. N Engl J Med 312: 874–879

    PubMed  CAS  Google Scholar 

  • Renne R, Friedl E, Schweizer M, Fleps U, Turek R, Neumann-Haefelin D (1992) Genomic organization and expression of simian foamy virus type 3 (SFV-3). Virology 186: 597–608

    PubMed  CAS  Google Scholar 

  • Renshaw RW, Casey JW (1994) Analysis of the 5’ long terminal repeat of bovine syncytial virus. Gene 141: 221–224

    PubMed  CAS  Google Scholar 

  • Rethwilm A (1995) Regulation of foamy virus gene expression. Curr Top Microbiol Immunol 193 (in press)

    Google Scholar 

  • Rethwilm A, Baunach G, Netzer KO, Maurer B, Borisch B, Ter Meulen V (1990) Infectious DNA of the human spumaretrovirus. Nucleic Acids Res 18: 733–738

    PubMed  CAS  Google Scholar 

  • Rethwilm A, Erlwein O, Baunach G, Maurer B, Ter Meulen V (1991) The transcriptional transactivator of human foamy virus maps to the bel 1 genomic region. Proc Natl Acad Sci USA 88: 941–945

    PubMed  CAS  Google Scholar 

  • Rosen CA (1991) Regulation of HIV gene expression by RNA-protein interactions. Trends Genet 7: 9–14

    PubMed  CAS  Google Scholar 

  • Saib A, Peries J, de The H (1993) A defective human foamy provirus generated by pregenome splicing. EM BO J 12: 4439–4444

    CAS  Google Scholar 

  • Santillana Hayat M, Rozain F, Bittoun P, Chopin Robert C, Lasneret J, Peries J, Canivet M (1993) Transient immunosuppressive effect induced in rabbits and mice by the human spumaretrovirus prototype HFV (human foamy virus). Res Virol 144: 389–396

    Google Scholar 

  • Schliephake A, Rethwilm A (1994) Nuclear localization of foamy virus gag precursor protein. J Virol 68: 4946–4954

    PubMed  CAS  Google Scholar 

  • Schnitzer TJ (1982) Simian foamy virus pseudotypes of vesicular stomatitis virus: production and use in sero-epidemiological investigations. J Gen Virol 59: 203–206

    PubMed  CAS  Google Scholar 

  • Schweizer M, Renne R, Neumann-Haefelin D (1989) Structural analysis of proviral DNA in simian foamy virus (LK-3)-infected cells. Arch Virol 109: 103–104

    PubMed  CAS  Google Scholar 

  • Schweizer M, Turek R, Hahn H, Schliephake A, Netzer KO, Eder G, Reinhardt M, Rethwilm A, Neumann-Haefelin D (1994a) Markers of foamy virus (FV) infection in monkeys, apes, and accidentally infected humans: appropriate testing fails to confirm suspected FV prevalence in man. AIDS Res Hum Retrovir uses (in press)

    Google Scholar 

  • Schweizer M, Turek R, Reinhardt M, Neumann-Haefelin D (1994b) Absence of foamy virus DNA in Graves’ disease. AIDS Res Hum Retroviruses 10: 601–605

    PubMed  CAS  Google Scholar 

  • Sharpe AH, Hunter JJ, Chassler P, Jänisch R (1990) Role of abortive retroviral infection of neurons in spongiform CNS degeneration. Nature 346: 181–183

    PubMed  CAS  Google Scholar 

  • Siekevitz M, Joseph SF, Dukovich M, Peffer N, Wong-Staal F, Greene WC (1987) Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-I. Science 238: 1575–1578

    PubMed  CAS  Google Scholar 

  • Stancek D, Stancekova-Gressnerova M, Janotka M, Hnilica P, Oravec D (1975) Isolation and some serological and epidemiological data on the viruses recovered from patients with subacute thyroiditis de Quervain. Med Microbiol Immunol (Berl) 161: 133–144

    CAS  Google Scholar 

  • Teich N (1984) Taxonomy of retroviruses. In: Weiss RA, Teich N, Varmus HE, Coffin J (eds) RNA tumor viruses. Cold Spring Harbor Laboratory, New York, pp 25–208

    Google Scholar 

  • Truneh A, Buck D, Cassatt DR, Juszczak R, Kassis S, Ryu SE, Healey D, Sweet R, Sattentau Q (1991) A region in domain 1 of CD4 distinct from the primary gp120 binding site is involved in HIV infection and virus-mediated fusion. J Biol Chem 266: 5942–5948

    PubMed  CAS  Google Scholar 

  • Venkatesh LK, Chinnadurai G (1993) The carboxy-terminal transcription enhancement region of the human spumaretrovirus transactivator contains discrete determinants of the activator function. J Virol 67: 3868–3876

    PubMed  CAS  Google Scholar 

  • Venkatesh LK, Theodorakis PA, Chinnadurai G (1991) Distinct cis-acting regions in U3 regulate trans-activation of the human spumaretrovirus long terminal repeat by the viral bell gene product. Nucleic Acids Res 19: 3661–3666

    PubMed  CAS  Google Scholar 

  • Vogel J, Hinrichs SH, Reynolds RK, Luciw PA, Jay G (1988) The HIV tat gene induces dermal lesions resembling Kaposi’s sarcoma in transgenic mice. Nature 335: 606–611

    PubMed  CAS  Google Scholar 

  • Watanabe T, Seiki M, Tsujimoto H, Miyoshi I, Hayami M, Yoshida M (1985) Sequence homology of the simian retrovirus genome with human T-cell leukemia virus type I. Virology 144: 59–65

    PubMed  CAS  Google Scholar 

  • Watanabe T, Seiki M, Hirayama Y, Yoshida M (1986) Human T-cell leukemia virus type I is a member of the African subtype of simian viruses (STLV). Virology 148: 385–388

    PubMed  CAS  Google Scholar 

  • Weissenberger J, Flügel R (1994) Identification and characterization of the bel-3 protein of human foamy virus. AIDS Res Hum Retroviruses 10: 595–600

    PubMed  CAS  Google Scholar 

  • Werner J, Gelderblom HR (1979) Isolation of foamy virus from patients with de Quervain thyroiditis. Lancet 2: 258–259

    PubMed  CAS  Google Scholar 

  • Westarp ME, Kornhuber HH, Rössler J, Flügel RM (1992) Human spuma virus antibodies in armyo-trophic lateral sclerosis. Neurol Psychiatry Brain Res 1: 1–4

    Google Scholar 

  • Young D, Samuels J, Clarke JK (1973) A foamy virus of possible human origin isolated in BHK-21 cells. Arch Gesamte Virusforsch 42: 228–234

    PubMed  CAS  Google Scholar 

  • Yu SF, Linial ML (1993) Analysis of the role of the bel and bet open reading frames of human foamy virus by using a new quantitative assay. J Virol 67: 6618–6624

    PubMed  CAS  Google Scholar 

  • Zider A, Mashhour B, Fergelot P, Grimber G, Vernet M, Hazan U, Couton D, Briand P, Cavard C (1993) Dispensable role of the NF-kappa B sites in the UV-induction of the HIV-1 LTR in transgenic mice. Nucleic Acids Res 21: 79–86

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aguzzi, A., Marino, S., Tschopp, R., Rethwilm, A. (1996). Regulation of Expression and Pathogenic Potential of Human Foamy Virus In Vitro and in Transgenic Mice. In: Chisari, F.V., Oldstone, M.B.A. (eds) Transgenic Models of Human Viral and Immunological Disease. Current Topics in Microbiology and Immunology, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85208-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85208-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85210-7

  • Online ISBN: 978-3-642-85208-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics