Skip to main content

Time as Coding Space in Neocortical Processing: A Hypothesis

  • Conference paper
Temporal Coding in the Brain

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Abstract

Most perceptual objects can be decomposed into components and, in general, the features of these components are not unique for a particular object. The individuality of objects results from the specific composition of elementary features and their relations rather than from the specificity of the component features. Hence, for a versatile representation of sensory patterns in the nervous system, three basic functions have to be accomplished: 1) elementary features need to be represented by neuronal responses, 2) responses to features constituting a particular object have to be distinguished and bound together in a flexible way, and 3) the specific relations among these features have to be encoded and preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles M, ed (1991) Corticonics. Cambridge University, Cambridge

    Google Scholar 

  • Aertsen AMHJ, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity” J Neurophysiol 61:900–917

    PubMed  CAS  Google Scholar 

  • Aertsen A, Vaadia E, Abeles M, Ahissar E, Bergmann II., Cannon B, Lavner Y, Margalit E, Nelken I, Rotter S (1991) Neural interactions in the frontal cortex of a behaving monkey. Signs of dependence on stimulus context and behavioral states. J Hirnforschung 32:735–743

    CAS  Google Scholar 

  • Ahissar E, Vaadia E, Ahissar M, Bergmann H, Arieli A, Abeles M (1992) Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science 257:1412–1415

    PubMed  CAS  Google Scholar 

  • Ariel M, Daw NW, Rader RK (1983) Rhythmicity in rabbit retinal ganglion cell responses. Vision Res 23(12): 1485–1493

    PubMed  CAS  Google Scholar 

  • Arnett DW (1975) Correlation analysis in the cat dorsal lateral geniculate nucleus. Exp Brain Res 24:111–130

    PubMed  CAS  Google Scholar 

  • Artola A, Singer W (1987) Long-term potentiation and NMD A receptors in rat visual cortex. Nature 330:649–652

    PubMed  CAS  Google Scholar 

  • Artola A, Singer W (1990) The involvement of N-methyl-D-aspartate rat visual cortex. Eur J Neurosci 2:254–269

    PubMed  Google Scholar 

  • Baylis GC, Rolls ET, Leonard CM (1985) Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey. Brain Res 342:91–102

    PubMed  CAS  Google Scholar 

  • Bishop PO, Levick WR, Williams WO (1964) Statistical analyses of the dark discharge of lateral geniculate neurons. J Physiol 170:598–612

    PubMed  CAS  Google Scholar 

  • Blakemore C, Vital-Durand F (1992) Different neural origins for “blur” ambyopia and strabismic amblyopia. Ophthal Physiol Opt 12:83

    Google Scholar 

  • Braitenberg V (1978) Cell assemblies in the cerebral cortex. In: Heim R, Palm G (eds) Lecture notes in biomathematics 21; Theoretical approaches in complex systems. Springer, Berlin, pp 171–188

    Google Scholar 

  • Braitenberg V, Schütz A (1991) Anatomy of the cortex. Springer, Berlin-HeidelbergNew York

    Google Scholar 

  • Callaway EM, Katz LC (1990) Emergency and refinement of clustered horizontal connections in cat striate cortex. J Neurosci 10:1134–1153

    PubMed  CAS  Google Scholar 

  • Callaway EM, Katz LC (1991) Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex. Proc Natl Acad Sci USA 88:745–749

    PubMed  CAS  Google Scholar 

  • Crewther DP, Crewther SG (1990) Neural sites of strabismic amblyopia in cats: spatial frequency deficit in primary cortical neurons. Exp Brain Res 79:615–622

    PubMed  CAS  Google Scholar 

  • Crick F (1984) Function of the thalamic reticular complex: The searchlight hypothesis. Proc Natl Acad Sci USA 81:4586–4590

    PubMed  CAS  Google Scholar 

  • Crick F, Koch C (1990) Towards a neurobiological theory of consciousness. Sem Neurosci 2:263–275

    Google Scholar 

  • Damasio AR (1990) Synchronous activation in multiple cortical regions: a mechanism for recall. Sem Neurosci 2:287–296

    Google Scholar 

  • Deppisch J, Bauer H-U, Schulen TB, König P, Pawelzik K, Geisel T (1992) Stochastic and oscillatory burst activities in a model of spiking neurons. In: Aleksander J, Taylor J (eds) Artificial neural networks 2. Elsevier, Amsterdam, pp 921–924

    Google Scholar 

  • Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the mecaque. J Neurosci 4:2051–2062

    PubMed  CAS  Google Scholar 

  • Desimone R, Schein SJ, Moran J, Ungerleider LG (1985) Contour, color and shape analysis beyond the striate cortex. Vision Res 24:441–452

    Google Scholar 

  • Deuchars J, West DC, Thomson AM (1994) Electrophysiology and morphology of connections between pyramidal neurones in deep layers of rat motor cortex in vitro, in press

    Google Scholar 

  • Doty RW, Kimura DS (1963) Oscillatory potentials in the visual system of cats and monkeys. J Physiol 168:205–218

    PubMed  CAS  Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: A mechanism for feature linking in the visual cortex? Biol Cybern 60:121–130

    PubMed  CAS  Google Scholar 

  • Eckhorn R, Schanze T, Brosch M, Salem W, Bauer R (1992) Stimulus-specific synchronizations in cat visual cortex: Multiple microelectrode and correlation studies from several cortical areas. In: Basar E, Bullock TH (eds) Induced rhythms in the brain. Birkhäuser, Boston-Basel-Berlin, pp 47–80

    Google Scholar 

  • Eckhorn R, Frien A, Bauer R, Woelbern T, Kehr H (1993) High frequency (60-90 Hz) oscillations in primary visual cortex of awake monkey. Neuro Report 4:243–246

    CAS  Google Scholar 

  • Edelmann GM (1987) Neural darwinism: the theory of neuronal group selection. Basic Books, Inc., New York

    Google Scholar 

  • Edelmann GM (1989) The remembered present. Basic Books, Inc., New York

    Google Scholar 

  • Edelmann GM, Mountcastle VB (1978) The mindful brain. MIT Press, Cambridge, Mass

    Google Scholar 

  • Engel AK, König P, Gray CM, Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: Inter-columnar interaction as determined by crosscorrelation analysis. Eur J Neurosci 2:588–606

    PubMed  Google Scholar 

  • Engel AK, Kreiter AK, König P, Singer W (1991a) Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proc Natl Acad Sci USA 88:6048–6052

    PubMed  CAS  Google Scholar 

  • Engel AK, König P, Kreiter AK, Singer W (1991 b) Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252:1177–1179

    Google Scholar 

  • Engel AK, König P, Singer W (1991c) Direct physiological evidence for scene segmentation by temporal coding. Proc Natl Acad Sci USA 88:9136–9140

    PubMed  CAS  Google Scholar 

  • Engel AK, König P, Kreiter AK, Schillen TB, Singer W (1992) Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15:218–226

    PubMed  CAS  Google Scholar 

  • Ferster D, LeVay S (1978) The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J Comp Neurol 182:923–944

    PubMed  CAS  Google Scholar 

  • Freeman WJ, Skarda CA (1985) Spatial EEG-patterns, non-linear dynamics and perception: the neo-Sherringtonian view. Brain Res Rev 10:147–175

    Google Scholar 

  • Fuster JM, Herz A, Creutzfeldt OD (1965) Interval analysis of cell discharge in spontaneous and optically modulated activity in the visual system. Arch Ital Biol 103:159–177

    PubMed  CAS  Google Scholar 

  • Gerstein GL, Aertsen AMHJ (1985) Representation of cooperative firing activity among simultaneously recorded neurons. J Neurophysiol 54(6): 1513–1528

    PubMed  CAS  Google Scholar 

  • Gerstein GL, Perkel DH (1972) Mutual temporal relationship among neuronal spike trains. Statistical techniques for display and analysis. Biophys J 12:453–473

    PubMed  CAS  Google Scholar 

  • Gerstein GL, Perkel DH, Dayhoff JE (1985) Cooperative firing activity in simultaneously recorded populations of neurons: Detection and measurement. J Neurosci 5(4): 881–889

    PubMed  CAS  Google Scholar 

  • Ghose GM, Freeman RD (1990) Origins of oscillatory activity in the cortex. Soc Neurosci Abstr 16:523.4

    Google Scholar 

  • Ghose GM, Freeman RD (1992) Oscillatory discharge in the visual system: does it have a functional role? J Neurophys 68(5): 1558–1574

    CAS  Google Scholar 

  • Gray CM, Singer W (1987) Stimulus-specific neuronal oscillations in the cat visual cortex: a cortical functional unit. Soc Neurosci Abstr 13:404.3

    Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortec. Proc Natl Acad Sci USA 86:1698–1702

    PubMed  CAS  Google Scholar 

  • Gray CM, Viana di Prisco G (1993) Properties of stimulus-dependent rhythmic activity of visual cortical neurons in the alert cat. Soc Neurosci Abs 19:359.8

    Google Scholar 

  • Gray CM, Engel AK, König P, Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: Receptive field properties and feature dependence. Eur J Neurosci 2:607–619

    PubMed  Google Scholar 

  • Gray CM, Engel AK, König P, Singer W (1992a) Mechanisms underlying the generation of neuronal oscillations in cat visual cortex. In: Basar E, Bullock TH (eds) Induced rhythms in the brain. Brain dynamic series. Birkhäuser Boston-Basel-Berlin, pp 29–45

    Google Scholar 

  • Gray CM, Engel AK, König P, Singer W (1992 b) Synchronization of oscillatory neuronal responses in cat striate cortex: Temporal properties. Vis Neurosci 8:337–347

    PubMed  CAS  Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    PubMed  CAS  Google Scholar 

  • Gross CG, Rocha-Miranda EC, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 35:96–111

    PubMed  CAS  Google Scholar 

  • Grossberg S (1980) How does the brain build a cognitive code? Physiol Rev 87:1–51

    CAS  Google Scholar 

  • Hansel D, Sompolinsky H (1992) Synchronization and computation in a chaotic neural network. Phys Rev Lett 68:718–721

    PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior. New York: Wiley

    Google Scholar 

  • Innocenti GM (1981) Growth and reshaping of axons in the establishment of visual callosal connections. Science 212:824–827

    PubMed  CAS  Google Scholar 

  • Innocenti GM, Frost DO (1979) Effects of visual experience on the maturation of the efferent system to the corpus callosum. Nature 280:231–234

    PubMed  CAS  Google Scholar 

  • Koch C, Schuster HG (1992) A simple network showing burst synchronization without frequency locking. Neur Comp 4:211–223

    Google Scholar 

  • König P, Schillen TB (1991) Stimulus-dependent assembly formation of oscillatory responses: I. synchronization. Neural Comput 3:155–166

    Google Scholar 

  • König P, Engel AK, Löwel S, Singer W (1990) Squint affects occurrence and synchronization of oscillatory responses in cat visual cortex. Soc Neurosci Abstr. 16:5232

    Google Scholar 

  • König P, Engel AK, Löwel S, Singer W (1993) Squint affects synchronization of oscillatory responses in cat visual cortex. Eur J Neurosci 5:501–508

    PubMed  Google Scholar 

  • König P, Janosch B, Schillen TB (1992) Stimulus-dependent assembly formation of oscillatory responses: III. Learning. Neural Comput 4:666–681

    Google Scholar 

  • Kreiter AK, Singer W (1992) Oscillatory neuronal responses in the visual cortex of the awake macaque monkey. Eur J Neurosci 4:369–375

    PubMed  Google Scholar 

  • Kreiter AK, Engel AK, Singer W (1992) Stimulus-dependent synchronization of oscillatory neuronal activity in the superior temporal sulcus of the macaque monkey. Eur Neurosci Ass Abstr 15:1076

    Google Scholar 

  • Lehky SR, Sejnowski TJ (1990) Neural model of stereoacuity and depth interpolation based on distributed representation of stereo disparity. Soc Neurosci Abstr 17:733

    Google Scholar 

  • Livingstone MS (1991) Visually evoked oscillations in monkey striate cortex. Soc Neurosci Abstr 17:733

    Google Scholar 

  • Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science 242:1654–1664

    PubMed  CAS  Google Scholar 

  • Llinas RR (1990) Intrinsic electrical properties of nerve cells and their role in network oscillation. In: Cold Spring Harbor symposium on quantitive biology, Vol LV. Cold Spring Harbor Laboratory Press, pp 933–938

    Google Scholar 

  • Llinas R, Ribary U (1993) Coherent 40-Hz oscillation characterizes dream state in humans. Proc Natl Acad Sci USA 90:2078–2081

    PubMed  CAS  Google Scholar 

  • Löwel S, Singer W (1992) Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255:209–212

    PubMed  Google Scholar 

  • Luhmann HJ, Martinez-Millan L, Singer W (1986) Development of horizontal intrinsic connections in cat striate cortex. Exp Brain Res 63:443–448

    PubMed  CAS  Google Scholar 

  • Luhmann HJ, Singer W, Martinez-Millan L (1990) Horizontal interactions in cat striate cortex: I. Anatomical substrate and postnatal development. Eur J Neurosci 2:344–357

    PubMed  Google Scholar 

  • Milner PM (1974) A model for visual shape recognition. Psychol Review 81:521–535

    CAS  Google Scholar 

  • Miyashita Y (1988) Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335:817–820

    PubMed  CAS  Google Scholar 

  • Munemori J, Hara K, Kimura M, Sato R (1984) Statistical features of impulse trains in cat’s lateral geniculate neurons. Biol Cybern 50:167–172

    PubMed  CAS  Google Scholar 

  • Munk MHJ, Nowak LG, Chouvet G, Nelson JI, Bullier J (1992) The structural basis of cortical synchronization. Eur J Neurosci Suppl 5:21

    Google Scholar 

  • Murthy VN, Fetz EE (1992) Coherent 25-to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci USA 89:5670–5674

    PubMed  CAS  Google Scholar 

  • Nelson JI, Salin PA, Munk MHJ, Arzi M, Bullier J (1992a) Spatial and temporal coherence in cortico-cortical connections: a cross-correlation study in areas 17 and 18 in the cat. Vis Neurosci 9:21–38

    PubMed  CAS  Google Scholar 

  • Nelson JI, Nowak LG, Chouvet G, Munk MHJ, Bullier J (1992 b) Synchronization between cortical neurons depends on activity in remote areas. Soc Neurosci Abstr 18:11

    Google Scholar 

  • Neuenschwander S, Varela F (1993) Visually-triggered neuronal oscillations in birds: An autocorrelation study of tectal activity. Eur J Neurosci 5:870–881

    PubMed  CAS  Google Scholar 

  • Palm G (1982) Neural assemblies. Springer Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Palm G (1990) Cell assemblies as a guideline for brain research. Concepts Neurosci 1:133–137

    Google Scholar 

  • Perrett DI, Mistlin AJ, Chitty AJ (1987) Visual neurones responsives to faces. Trends Neurosci 10:358–364

    Google Scholar 

  • Pinault D, Deschênes M (1992a) Voltage-dependent 40-Hz oscillations in rat reticular thalamic neurons in vivo. Neuroscience 51:245–258

    PubMed  CAS  Google Scholar 

  • Pinault D, Deschênes M (1992b) Control of 40-Hz firing of reticular thalamic cells by neurotransmitters. Neuroscience 51:259–268

    PubMed  CAS  Google Scholar 

  • Price DJ, Blakemore C (1985 a) The postnatal development of the association projection from visual cortical area 17 to area 18 in the cat. J Neurosci 5:2443–2452

    PubMed  CAS  Google Scholar 

  • Price DJ, Blakemore C (1985b) Regressive events in the postnatal development of association projections in the visual cortex. Nature 316:721–724

    PubMed  CAS  Google Scholar 

  • Raether A, Gray CM, Singer W (1989) Intercolumnar interactions of oscillatory neuronal responses in the visual cortex of alert cats. Eur Neurosci Abstr 12:725

    Google Scholar 

  • Rolls ET (1991) Neural organization of higher visual functions. Curr Opin Neurobiol 1:274–278

    PubMed  CAS  Google Scholar 

  • Sakai K, Miyashita Y (1991) Neural organization for the long-term memory of paired associated (see comments). Nature 354:152–155

    PubMed  CAS  Google Scholar 

  • Schillen TB, König P (1990) Coherency detection by coupled oscillatory responses Synchronization connections in neural oscillator layers. In: Eckmiller R (ed), Parallel processing in neural systems and computers. Elsevier, Amsterdam, pp 139–142

    Google Scholar 

  • Schillen TB, König P (1991) Stimulus-dependent assembly formation of oscillatory responses. II. Desynchronization. Neural Comput 3:167–178

    Google Scholar 

  • Schillen TB, König P (1993) Temporal structure can solve the binding problem for multiple feature domains. Computation and Neural Systems. Norwell: Kluver, pp. 509–513

    Google Scholar 

  • Schuster HG, Wagner P (1990 a) A model for neuronal oscillations in the visual cortex. 1. Mean-field theory and derivation of the phase equations. Biol Cybern 64:77–82

    PubMed  CAS  Google Scholar 

  • Schuster HG, Wagner P (1990b) A model for neuronal oscillations in the visual cortex. 2. Phase description of the feature dependent synchronization. Biol Cybern 64:83–85

    PubMed  CAS  Google Scholar 

  • Schwarz C, Bolz J (1991) Functional specificity of the long-range horizontal connections in cat visual cortex: a cross-correlated study. J Neurosci 11:2995–3007

    PubMed  CAS  Google Scholar 

  • Shimizu H, Yamaguchi Y, Tsuda I, Yano M (1986) Pattern recognition based on holonic information dynamics: towards synergetic computers. In: Haken H (ed) Complex systems-operational approaches. Springer Verlag, Berlin-Heidelberg-New York, pp 225–240

    Google Scholar 

  • Singer W (1985) Activity-dependent self-organization of the ammalian visual cortex. In: Rose D, Dobson VG (eds) Models of the visual cortex. John Wiley, Chichester, pp 123–136

    Google Scholar 

  • Singer W (1990) Search for coherence: A basic principle of cortical self-organization. Concepts Neurosci 1:1–26

    Google Scholar 

  • Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349–374

    PubMed  CAS  Google Scholar 

  • Singer W (1994) Putative functions of temporal correlations in neocortical processing. In: Koch C, Davis J (eds) Large scale neuronal theories of the brain. Cambridge, Mass, MIT Press, pp. 201–237

    Google Scholar 

  • Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334–350

    PubMed  CAS  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (1991) Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. Proc Natl Acad Sci USA 88:129–133

    PubMed  CAS  Google Scholar 

  • Steriade M, McCarley RW (eds) (1990) Brainstem control of wakefulness and sleep. Plenum Press, New York

    Google Scholar 

  • Steriade M, Curro-Dossi R, Paré D, Oakson G (1991) Fast oscillations (20-40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci USA 88:4396–4400

    PubMed  CAS  Google Scholar 

  • Steriade M, Curro-Dossi R, Contreras D (1994) Properties of intralaminar thalamocortical cells discharging rhythmic (40 Hz) spike-bursts at 1000 Hz. In press

    Google Scholar 

  • Steriade M, Jones EG, Llinas RR (1990) Thalamic oscillations and signaling. John Wiley and Sons, New York

    Google Scholar 

  • Stevens CF (1987) Specific consequences of general brain properties. In: Edelman JM, Gall WE (eds) Synaptic function, Chapter 24. John Wiley and Sons, New York, pp 699–709

    Google Scholar 

  • Tovee JM, Rolls ET (1992) The functional nature of neuronal oscillations. Trends Neurosci 15:387

    PubMed  CAS  Google Scholar 

  • von der Malsburg C (1985) Nervous structures with dynamical links. Ber Bunsenges PhysChem 89:703–710

    Google Scholar 

  • von der Malsburg C, Schneider W (1986) A neutral cocktail-party processor. Biol Cybern 54:29–40

    PubMed  Google Scholar 

  • von Noorden GK (1990) Binocular vision and ocular motility, theory and management of strabismus. The CV Mosby Company, St. Louis, Baltimore

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Singer, W. (1994). Time as Coding Space in Neocortical Processing: A Hypothesis. In: Buzsáki, G., Llinás, R., Singer, W., Berthoz, A., Christen, Y. (eds) Temporal Coding in the Brain. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85148-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85148-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85150-6

  • Online ISBN: 978-3-642-85148-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics