Skip to main content

Redox-Driven Cycling of Trace Elements in Lakes

  • Chapter
Physics and Chemistry of Lakes

Abstract

This chapter encompasses the transformation and movement of selected trace metals, metalloids, and radionuclides between phases and/or compartments in lakes, arising from biologically and chemically mediated redox reactions. Thus, it is concerned with the spatial and temporal distributions and speciation of trace elements in solution, in suspended particles, and in sediments. It updates and complements an earlier overview (Sholkovitz 1985), which considered the redoxrelated behavior of alkaline earth elements and 137CS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggett J, O′Brien GA (1985) Detailed model for the mobility of arsenic in lacustrine sediments based on measurements in Lake Ohakuri. Environ Sci Technol 19:231–238

    CAS  Google Scholar 

  • Aggett J, Roberts LS (1986) Insight into the mechanism of accumulation of arsenate and phosphate in Hydro Lake sediments by measuring the rate of dissolution with ethylenediaminetetraacetic acid. Environ Sci Technol 20: 183–186

    CAS  Google Scholar 

  • Aggett J, Kriegman MR (1988) The extent of formation of arsenic (III) in sediment interstitial waters and its release to hypolimnetic waters in Lake Ohakuri. Water Res 22:407–411

    CAS  Google Scholar 

  • Alberts JJ, Orlandini KA (1981) Laboratory and field studies of the relative mobility of 239,240pU and 241 Am from lake sediments under oxic and anoxic conditions. Geochim Cosmochim Acta 45:1931–1939

    CAS  Google Scholar 

  • Alberts JJ, Tilly U, Vigerstad TJ (1979) Seasonal cycling of cesium-137 in a reservoir. Science 203: 649–651

    CAS  Google Scholar 

  • Alberts JJ, Pinder JE, Bowling JW, Nelson OM, Orlandini KO (1986) 239,240pU, 241 Am and 232Th in lakes: the effects of seasonal anoxia. J Environ Radioactivity 4: 167–176

    CAS  Google Scholar 

  • Alberts JJ, Wahlgren MA, Orlandini KA, Durbahn CA (1989) The distributions of 239,240pu, 238Pu, 241Am, and 137Cs among chemically-defined components of sediments, settling particulates and net plankton of Lake Michigan. J Environ Radioactivity 9:89–103

    CAS  Google Scholar 

  • Allard B, Rydberg J (1983) Behaviour of plutonium in natural waters. In: Carnall WT, Choppin GR (eds) Plutonium chemistry. Am Chern Soc Symp Ser: 216, Washington, pp 275–295

    Google Scholar 

  • Anderson LCD, Bruland KW (1991) Biogeochemistry of arsenic in natural waters: the importance of methylated species. Environ Sci Technol 25:420–427

    CAS  Google Scholar 

  • Anderson RF, Bacon MP, Brewer PG (1982) Elevated concentrations of actinides in Mono Lake. Science 216:514–516

    CAS  Google Scholar 

  • Baccini P, Joller T (1981) Transport processes of copper and zinc in a highly eutrophic and meromictic lake. Schweiz Z Hydrol 43:176–199

    CAS  Google Scholar 

  • Balistrieri LS, Chao TT (1990) Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim Cosmochim Acta 54:739–751

    CAS  Google Scholar 

  • Balistrieri LS, Murray JW, Paul B (1992a) The biogeochemical cycling of trace metals in the water column of Lake Sammamish, Washington: Response to seasonally anoxic conditions. Limnol Oceanogr 37:529–548

    CAS  Google Scholar 

  • Balistrieri LS, Murray JW, Paul B (1992b) The cycling of iron and manganese in the water column of Lake Sammamish, Washington. Limnol Oceanogr 37:510–528

    CAS  Google Scholar 

  • Batterson TR, McNabb CD (1983) Arsenic in Lake Lansing, Michigan. Environ Toxicol Chern 2:1–17

    CAS  Google Scholar 

  • Belzile N, Tessier A (1990) Interactions between arsenic and iron oxyhydroxides in lacustrine sediments. Geochim Cosmochim Acta 54: 103–109

    CAS  Google Scholar 

  • Belzile N, De Vitre RR, Tessier A (1989) In situ collection of diagenetic iron and manganese oxyhydroxides from natural sediments. Nature 340:376–377

    CAS  Google Scholar 

  • Benoit G, Hemond HF (1990) 21OpO and 210Pb remobilization from lake sediments in relation to iron and manganese cycling. Environ Sci Technol 24: 1224–1234

    CAS  Google Scholar 

  • Benoit G, Hemond HF (1991) Evidence for diffusive redistribution of 210Pb in lake sediments. Geochim Cosmochim Acta 55:1963–1975

    CAS  Google Scholar 

  • Bruland KW (1980) Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet Sci Lett 47:176–198

    CAS  Google Scholar 

  • Bruland KW, Franks RP (1983) Mn, Ni, Cu, Zn and Cd in the western north Atlantic. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in seawater. Plenum, New York, pp 395–414

    Google Scholar 

  • Brunskill GJ, Ludlam SD (1988) The variation of annual 210Pb flux to varved sediments of Fayetteville Green Lake, New York from 1885 to 1965. Verh Int Verein Limnol 23:848–854

    Google Scholar 

  • Buesseler KO, Benoit G, Sholkovitz ER (1985) A pore water study of plutonium in a seasonally anoxic lake. J Environ Radioactivity 2:283–292

    CAS  Google Scholar 

  • Buffle J, De Vitre RR, Perret D, Leppard GG (1989) Physico-chemical characteristics of a colloidal iron phosphate species formed at the oxic-anoxic interface of a eutrophic lake. Geochim Cosmochim Acta 53:399–408

    CAS  Google Scholar 

  • Calvert SE, Price NB (1977) Shallow water, continental margin and lacustrine nodules: distribution and geochemistry. In: Glasby GP, (ed) Marine manganese deposits. Elsevier, Amsterdam, pp 45–86

    Google Scholar 

  • Carignan R, Nriagu JO (1985) Trace metal deposition and mobility in the sediments of two lakes near Sudbury, Ontario. Geochim Cosmochim Acta 49: 1753–1764

    CAS  Google Scholar 

  • Carignan R, Tessier A (1985) Zinc deposition in acid lakes: the role of diffusion. Science 228: 1524–1526

    CAS  Google Scholar 

  • Choppin GR (1991) Redox speciation of plutonium in natural waters. J Radioanal Nucl Chern 147: 109–116

    CAS  Google Scholar 

  • Collienne RH (1983) Photoreduction of iron in the epilimnion of acidic lakes. Limnol Oceanogr 28: 83–100

    CAS  Google Scholar 

  • Co mans RNJ, Hockley DE (1992) Kinetics of cesium sorption on illite. Geochim Cosmochim Acta 56: 1157–1164

    CAS  Google Scholar 

  • Comans RNJ, Middleburg JJ, Zonderhuis J, Woittiez JRW, De Lange GJ, Das HA, Van Der Weijden CH (1989) Mobilization of radiocaesium in pore water of lake sediments. Nature 339:367–369

    CAS  Google Scholar 

  • Cooke TD, Bruland KW (1987) Aquatic chemistry of selenium: evidence of biomethylation. Environ Sci TechnoI21:1214–1219

    Google Scholar 

  • Cornwell JC (1986) Diagenetic trace-metal profiles in Arctic lake sediments. Environ Sci Technol 20:299–302

    CAS  Google Scholar 

  • Cremers A, Elsen A, De Preter P, Maes A (1988) Quantitative analysis of radiocaesium retention in soils. Nature 335:247–249

    CAS  Google Scholar 

  • Crusius J, Anderson RF (1994) Evaluating the mobility of 137Cs, 239+240pU and 210Pb from their distributions in laminated lake sediments. J Paleolimnol (in press)

    Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chern Rev 89:713–764

    CAS  Google Scholar 

  • Cutter GA (1991) Selenium biogeochemistry in reservoirs, vol 1. Time series and mass balance results. Electric Power Res Instit, Project 2020–1, Final Rep EPRI EN-7281

    Google Scholar 

  • Davison W (1991) The solubility of iron sulphides in synthetic and natural waters at ambient temperature. Aquat Sci 35:309–329

    Google Scholar 

  • Davison W (1993) Iron and manganese in lakes. Earth Sci Rev 34:119–163

    CAS  Google Scholar 

  • Davison W, Seed G. (1983) The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochim Cosmochim Acta 47:67–79

    CAS  Google Scholar 

  • Davison W, de Vitre R (1992) Iron particles in freshwater. In: Buffle J, van Leeuwen HP (eds) Environmental Particles, vol 1. Lewis, Boca Raton, pp 315–355

    Google Scholar 

  • Davison W, Woof C, Rigg E (1982) The dynamics of iron and manganese in a seasonally anoxic lake: direct measurement of fluxes using sediment traps. Limnol Oceanogr 27 :987–1003

    CAS  Google Scholar 

  • Davison W, Grime GW, Woof C (1992) Characterization of lacustrine iron sulfide particles with protoninduced X-ray emission. Limnol Oceanogr 37: 1770–1777

    CAS  Google Scholar 

  • Davison W, Hilton J, Hamilton-Taylor J, Kelly M, Livens F, Rigg E, Carrick TR, Singleton DL (1993a) The transport of Chernobyl-derived radiocaesium through two freshwater lakes in Cumbria, UK. J Environ Radioactivity 19:125–153

    CAS  Google Scholar 

  • Davison W, Spezzano P, Hilton J (1993b) Remobilization of caesium from freshwater sediments. J Environ Radioactivity 19:109–124

    CAS  Google Scholar 

  • De Vitre R, Davison W (1993) Manganese particles in freshwater. In: van Leeuwen HP, Buffle J (eds) Environmental Particles, vol 2. Lewis, Boca Raton, pp 317–352

    Google Scholar 

  • De Vitre R, Buffle J, Perret D, Baudat R (1988) A study of iron and manganese transformations at the 02-S(-II) transition layer in a eutrophic lake (Lake Bret, Switzerland): a multimethod approach. Geochim Cosmochim Acta 52:1601–1613

    Google Scholar 

  • De Vitre R, Belzile N, Tessier A (1991) Speciation and adsorption of arsenic on diagenetic iron oxyhydroxides. Limnol Oceanogr 36:1480–1485

    Google Scholar 

  • Diem D, Stumm W (1984) Is dissolved Mn2+ being oxidised by O2 in absence of Mn-bacteria or surface catalysts? Geochim Cosmochim Acta 48: 1571–1573

    CAS  Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT (1992) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26:96–101

    Google Scholar 

  • Drake JC, Ackerly S (1983) Pore water investigations of Lake Champlain sediments. Proc 26th Conf Great Lakes Res, Oswego, New York, p 38 (Abstr)

    Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface Complexation Modelling: Hydrous Ferric Oxide. John Wiley, New York, 393 pp

    Google Scholar 

  • Emerson S (1976) Early diagenesis in anaerobic lake sediments: chemical equilibria in interstitial waters. Geochim Cosmochim Acta 40:925–934

    CAS  Google Scholar 

  • Evans DW, Alberts LL, Clark RA (1983) Reversible ion exchange fixation of cesium-137 leading to mobilization from reservoir sediments. Geochim Cosmochim Acta 47:1041–1049

    CAS  Google Scholar 

  • Falkner KK, Measures CI, Herbelin SE, Edmond JM, Weiss RF (1991) The major and minor element chemistry of Lake Baikal. Limnol Oceanogr 36: 413–423

    CAS  Google Scholar 

  • Forstner U (1982) Accumulative phases for heavy metals in limnic sediments. Hydrobiol 91:269–284

    Google Scholar 

  • Freeman MC, Aggett J, O′Brien G (1986) Microbial transformations of arsenic in Lake Ohakuri, New Zealand. Water Res 20:283–294

    CAS  Google Scholar 

  • Frevert T (1987) Heavy metals in Lake Kinneret (Israel). II. Hydrogen sulfide dependent precipitation of copper, cadmium, lead and zinc. Arch Hydrobiol 109:1–24

    CAS  Google Scholar 

  • Fuller CC, Davis JA, Waychunas GA (1993) Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and co-precipitation. Geochim Cosmochim Acta 57:2271–2282

    CAS  Google Scholar 

  • Giusti L, Hamilton-Taylor J, Davison W, Hewitt CN (1993) Sorption of trace metals (Cu, Pb, Zn) by suspended lake particles in artificial (0.005 M NaN03) and natural (Esthwaite Water) freshwaters. Geochim Cosmochim Acta (submitted)

    Google Scholar 

  • Green WJ, Ferdelman TG, Canfield DE (1989) Metal dynamics in Lake Vanda (Wright Valley, Antarctica). Chern Geol 76:85–94

    CAS  Google Scholar 

  • Gunkel G von, Sztraka A (1986) Untersuchungen zum Verhalten von Schwermetallen in Gewässern, II. Die Bedeutung der Eisen- und ManganRemobilisierung für die hypolimnische Anreicherung von Schwermetallen. Arch Hydrobiol 106:91–117

    CAS  Google Scholar 

  • Hamilton-Taylor J, Morris EB (1985) The dynamics of iron and manganese in the surface sediments of a seasonally anoxic lake. Arch Hydrobiol/Suppl 72:135–165

    CAS  Google Scholar 

  • Hamilton-Taylor J, Willis M, Reynolds CS (1984) Depositional fluxes of metals and phytoplankton in Windermere as measured by sediment traps. Limnol Oceanogr 29:695–710

    CAS  Google Scholar 

  • Hamilton-Taylor J, Kelly M, Kershaw P, Lambert CE (1993) Radionuclide aquatic pathways. In: Warner FE, Harrison RM (eds) Radioecology after Chernobyl. Wiley, New York, pp 177–274

    Google Scholar 

  • Harriss RC, Troup AG (1970) Chemistry and origin of freshwater ferromanganese concretions. Limnol Oceanogr 15:702–712

    Google Scholar 

  • Hart BT (1982) Uptake of trace metals by sediments and suspended particulates: a review. Hydrobiol 91:299–313

    Google Scholar 

  • Hecky RE, Campbell P, Hendzel LL (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr 38:709–724

    CAS  Google Scholar 

  • Hesslein RH (1987) Whole-lake metal radiotracer movement in fertilized lake basins. Can J Fish Aquat Sci 44:74–82

    CAS  Google Scholar 

  • Hilton J, Long GJ, Chapman JS, Lishman JP (1986) Iron mineralogy of sediments. A Mossbauer study. Geochim Cosmochim Acta 50:2147–2151

    CAS  Google Scholar 

  • Jaquet J-M, Nembrini G, Garcia J, Vernet JP (1982) The manganese cycle in Lac Leman, Switzerland: the role of Metallogenium. Hydrobiol 91:323–340

    Google Scholar 

  • Johnson CA, Sigg L, Lindauer U (1992b) The chromium cycle in a seasonally anoxic lake. Limnol Oceanogr 37:315–321

    CAS  Google Scholar 

  • Johnson KS, Coale KH, Jannasch HW (1992a) Analytical chemistry in oceanography. Anal Chern 64:1065A-1075A

    CAS  Google Scholar 

  • Kaczynski SE, Kieber RJ (1993) Aqueous trivalent chromium photoproduction in natural waters. Environ Sci Technol 27: 1572–1576

    CAS  Google Scholar 

  • Kephkay PE (1985) Kinetics of microbial manganese oxidation and trace metal binding in sediments: results from an in situ dialysis technique. Limnol Oceanogr 30:713–726

    Google Scholar 

  • Kuhn A, Sigg L (1993) Arsenic cycling in eutrophic Lake Greifen, Switzerland: influence of seasonal redox processes. Limnol Oceanogr 38: 1052–1059

    CAS  Google Scholar 

  • Landing WM, Burnett WC, Lyons WB, Orem WH (1991) Nutrient cycling and the biogeochemistry of manganese, iron, and zinc in Jellyfish Lake, Palau. Limnol Oceanogr 36:515–525

    CAS  Google Scholar 

  • Laxen DPH (1984/1985) Adsorption of Cd, Pb and Cu during the precipitation of hydrous ferric oxide in natural water. Chern Geol 47:321–332

    CAS  Google Scholar 

  • Laxen DPH (1985) Trace metal adsorption/coprecipitation on hydrous ferric oxide under realistic conditions. The role of humic substances. Water Res 19: 1229–1236

    CAS  Google Scholar 

  • Laxen DPH, Sholkovitz ER (1981) Adsorption (coprecipitation) of trace metals at natural concentrations on hydrous ferric oxide in lake water samples. Environ Technol Lett 2:561–568

    CAS  Google Scholar 

  • Lipinski NG, Huang PM, Liaw WK, Hammer UT (1986) The effects of chemical treatments on the retention and redox reactions of selenium by selected freshwater sediments. Can Tech Rep Fish Aquat Sci 1462:166–184

    CAS  Google Scholar 

  • Lipinski NG, Huang PM, Hammer UT, Liaw WK (1987) The interaction of selenate and selenite with selected freshwater sediments. Int Rev Ges Hydrobiol 72:107–114

    CAS  Google Scholar 

  • Lovell MA, Farmer JG (1983) The geochemistry of arsenic in the freshwater sediments of Loch Lomond. Heavy Metal Environ, 4th Int Conf, vol 2, CEP Consultants, Edinburgh, pp 776–778

    Google Scholar 

  • Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    CAS  Google Scholar 

  • Lum KR, Gammon KL (1985) Geochemical availability of some trace and major elements in surficial sediments of the Detroit River and western Lake Erie. J Great Lakes Res 11:328–338

    CAS  Google Scholar 

  • Maest AS, Pasilis SP, Miller LG, Nordstrom DK (1992) Redox geochemistry of arsenic and iron in Mono Lake, California, USA. In: Kharaka YK, Maest AS (eds) Water-rock interaction, vol l. Low temperature environments. Proc 7th Int Symp Water-Rock Interaction, Balkema, Rotterdam, pp 507–511

    Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick Jr WH (1991) Arsenic and selenium chemistry as affected by sediment redox potential and pH. J Environ Qual 20: 522–527

    CAS  Google Scholar 

  • Matisoff G, Lindsay AH, Matis S, Soster FM (1980) Trace metal mineral equilibria in Lake Erie sediments. J Great Lakes Res 6:353–366

    CAS  Google Scholar 

  • McGrath M, Davison W, Hamilton-Taylor J (1989) Biogeochemistry of barium and strontium in a softwater lake. Sci Total Environ 87/88:287–295

    Google Scholar 

  • McKee JD, Wilson TP, Long DT, Owen RM (1989a) Geochemical partitioning of Pb, Zn, Cu, Fe, and Mn across the sediment-water interface in large lakes. J Great Lakes Res 15:46–58

    CAS  Google Scholar 

  • McKee JD, Wilson TP, Long DT, Owen, RM (1989b) Pore water profiles and early diagenesis of Mn, Cu, and Pb in sediments from large lakes. J Great Lakes Res 15:68–83

    CAS  Google Scholar 

  • Moffett JW, Zika RG (1983) Oxidation kinetics of Cu(I) in seawater: implications for its existence in the marine environment. Mar Chem 13:239–251

    CAS  Google Scholar 

  • Moffett JW, Zika RG (1987) Reaction kinetics of hydrogen peroxide with copper and iron in seawater. Environ Sci Technol 21:804–810

    CAS  Google Scholar 

  • Morfett K (1988a) Trace metal dynamics in a seasonally anoxic lake. PhD thesis, Lancaster Vniv

    Google Scholar 

  • Morlett K (1988b) The distribution and transport of Cu and Zn in a seasonally anoxic lake. Trace Elem New Zealand: Environ Human Animal, Proc New Zealand Trace Elem Group Conf, Lincoln Coli, Canterbury, pp 57–64

    Google Scholar 

  • Morlett K, Davison W, Hamilton-Taylor J (1988) Trace metal dynamics in a seasonally anoxic lake. Environ Geol Water Sci 11:107–114

    Google Scholar 

  • Morse JW, Choppin GR (1986) Laboratory studies of plutonium in marine systems. Mar Chem 20:73–89

    CAS  Google Scholar 

  • Morse JW, Arakaki T (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochim Cosmochim Acta 57:3635–3640

    CAS  Google Scholar 

  • Mortimer CH (1941) The exchange of dissolved substances between mud and water in lakes: I and II. J Ecol 29:280–329

    CAS  Google Scholar 

  • Mortimer CH (1942) The exchange of dissolved substances between mud and water in lakes: III and IV. J Ecol 30:147–201

    CAS  Google Scholar 

  • Mouvet C, Bourg ACM (1983) Speciation (including adsorbed species) of copper, lead, nickel, aItd zinc in the Meuse River. Water Res 17:641–649

    CAS  Google Scholar 

  • Mudge S, Hamilton-Taylor J, Kelly M, Bradshaw K (1988) Laboratory studies of the chemical behaviour of plutonium associated with contaminated estuarine sediments. J Environ Radioactivity 8:217–237

    CAS  Google Scholar 

  • Murray JW (1987) Mechanisms controlling the distribution of trace elements in oceans and lakes. In: Hites RA, Eisenreich SJ (eds) Sources and fates of aquatic pollutants. Am Chem Soc Adv Chem Ser 216:153–184

    Google Scholar 

  • Nelson DM, Larsen RP, Penrose WR (1987) Chemical speciation of plutonium in natural waters. In: Environmental research on actinide elements. Proc Conf, Hilton Head, South Carolina, 1983, Dept Energy CONF-841142, pp 27–48

    Google Scholar 

  • Nelson DM, Orlandini KA, Penrose WR (1989) Oxidation states of plutonium in carbonate-rich natural waters. J Environ Radioactivity 9:189–198

    CAS  Google Scholar 

  • Nriagu JO, Lawson G, Wong HKT, Azcue JM (1993) A protocol for minimizing contamination in the analysis of trace metals in Great Lakes waters. J Great Lakes Res 19:175–182

    CAS  Google Scholar 

  • Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel sulphate-independent respiration. Appl Environ Microbiol 55:2333–2343

    CAS  Google Scholar 

  • Orlandini KA, Penrose WR, Harvey BR, Lovett MB, Findlay MW (1990) Colloidal behaviour of actinides in an oligotrophic lake. Environ Sci Technol 24: 706–712

    CAS  Google Scholar 

  • Oscarson DW, Huang PM, Liaw WK (1980) The oxidation of arsenite by aquatic sediments. J Environ Qual 9:700–703

    CAS  Google Scholar 

  • Oscarson DW, Huang PM, Liaw WK (1981) Role of manganese in the oxidation of arsenite by freshwater lake sediments. Clays Clay Min 29:219–225

    CAS  Google Scholar 

  • Pardue JH, DeLaune RD, Patrick WH, Whitcomb JH (1989) Effect of redox potential on fixation of 137CS in lake sediment. Health Phys 57:781–789

    CAS  Google Scholar 

  • Pedersen TF (1983) Dissolved heavy metals in a lacustrine mine tailings deposit - Buttle Lake, British Columbia. Mar Pollut Bull 14:249–254

    CAS  Google Scholar 

  • Pedersen TF, Mueller B, McNee JJ, Pelletier CA (1993) The early diagenesis of submerged sulphiderich mine tailings in Anderson Lake, Manitoba. Can J Earth Sci 30:1099–1109

    CAS  Google Scholar 

  • Pinder JE, Alberts JJ, Bowling JW, Nelson DM, Orlandini KO (1992) The annual cycle of plutonium in the water column of a warm, monomictic reservoir. J Environ Radioactivity 17:59–81

    CAS  Google Scholar 

  • Rai D, Eary LE, Zachara JM (1989) Environmental chemistry of chromium. Sci Total Environ 86:15–23

    CAS  Google Scholar 

  • Reynolds GL, Hamilton-Taylor J (1992) The role of planktonic algae in the cycling of Zn and Cu in a productive soft-water lake. Limnol Oceanogr 37: 1759–1769

    CAS  Google Scholar 

  • Richard FC, Bourg ACM (1991) Aqueous geochemistry of chromium: a review. Water Res 25:807–816

    CAS  Google Scholar 

  • Sakata M (1985) Diagenetic remobilization of manganese, iron, copper and lead in anoxic sediment of a freshwater pond. Water Res 19:1033–1038

    CAS  Google Scholar 

  • Saleh FY, Parkerton TF, Lewis RV, Huang JH, Dickson KL (1989) Kinetics of chromium transformations in the environment. Sci Total Environ 86:25–41

    CAS  Google Scholar 

  • Sanchez AL, Murray JW, Schell WR, Miller LG (1986) Fallout plutonium in two oxic-anoxic environments. Limnol Oceanogr 31:1110–1121

    CAS  Google Scholar 

  • Santschi PH (1988) Factors controlling the biogeochemical cycles of trace elements in fresh and coastal marine waters as revealed by artificial radioisotopes. Limnol Oceanogr 33:848–866

    CAS  Google Scholar 

  • Santschi PH (1989) Use of radionuclides in the study of contaminant cycling processes. Hydrobiol 176/177: 307–320

    Google Scholar 

  • Santschi PH, Nyffeler UP, Anderson RF, Schiff SL, O′Hara P, Hesslein RH (1986) Response of radioactive trace metals to acid-base titrations in controlled experimental ecosystems: evaluation of transport parameters for application to whole-lake radiotracer experiments. Can J Fish Aquat Sci 43:60–77

    CAS  Google Scholar 

  • Santschi P, Hohener P, Benoit G, Buchholtz-ten Brink M (1990) Chemical processes at the sediment-water interface. Mar Chern 30:269–315

    CAS  Google Scholar 

  • Schintu M, Kudo A, Sarritzu G, Contu A (1991) Heavy metal distribution and mobilization in sediments from a drinking water reservoir near a mining area. Water Air Soil Pollut 57–58:329–338

    CAS  Google Scholar 

  • Seyler P, Martin J-M (1989) Biogeochemical processes affecting arsenic species distribution in a permanently stratified lake. Environ Sci Technol 23:1258–1263

    CAS  Google Scholar 

  • Sholkovitz ER (1985) Redox-related geochemistry in lakes; alkali metals, alkaline earth elements, and 137Cs. In: Stumm W, (ed) Chemical processes in lakes. Wiley, New York, pp 119–142

    Google Scholar 

  • Sholkovitz ER, Carey AE, Cochran JK (1982) Aquatic chemistry of plutonium in seasonally anoxic lake waters. Nature 300:159–161

    CAS  Google Scholar 

  • Sigg L (1985) Metal transfer mechanisms in lakes; the role of settling particles. In: Stumm W, (ed) Chemical processes in lakes. Wiley, New York, pp 283–310

    Google Scholar 

  • Sigg L, Sturm M, Kistler D (1987) Vertical transport of heavy metals by settling particles in Lake Zurich. Limnol Oceanogr 32: 112–130

    CAS  Google Scholar 

  • Sigg L, Johnson CA, Kuhn A (1991) Redox conditions and alkalinity generation in a seasonally anoxic lake (Lake Greifen). Mar Chern 36:9–26

    CAS  Google Scholar 

  • Simpson HJ, Trier RM, Toggweiler JR, Mathieu G, Deck BL, Olsen CR, Hammond DE, Fuller C, Ku TL (1982) Radionuclides in Mono Lake, California. Science 216:512–514

    CAS  Google Scholar 

  • Spezzano P, Hilton J, Lishman JP, Carrick TR (1993) The variability of Chernobyl Cs retention in the water column of lakes in the English Lake District, two years and four years after deposition. J Environ Radioactivity 19:213–232

    CAS  Google Scholar 

  • Stokes PM, Szokalo AM (1977) Sediment-water interchange of copper and nickel in experimental aquaria. Proc 12th Can Symp, Water Pollut Res Can, pp 157–177

    Google Scholar 

  • Stumm W, Sulzberger B (1992) The cycling of iron in natural environments: considerations based on laboratory studies of heterogeneous redox processes. Geochim Cosmochim Acta 56:3233–3257

    CAS  Google Scholar 

  • Sugiyama M, Hori T, Kihara S, Matsui M (1992) A geochemical study on the specific distribution of barium in Lake Biwa, Japan. Geochim Cosmochim Acta 56:597–605

    CAS  Google Scholar 

  • Sulzberger B, Schnoor JL, Giovanoli R, Hering JG, Zobrist J (1990) Biogeochemistry of iron in an acidic lake. Aquat Sci 52:56–74

    Google Scholar 

  • Takamatsu T, Kawashima M, Koyama M (1985) The role of Mn2+ -rich hydrous manganese oxide in the accumulation of arsenic in lake sediments. Water Res 19: 1029–1032

    CAS  Google Scholar 

  • Talbot RW, Andren A W (1984) Seasonal variations of 210Pb and 210pO concentrations in an oligotrophic lake. Geochim Cosmochim Acta 48:2053–2063

    CAS  Google Scholar 

  • Tailing JF (1976) The depletion of carbon dioxide from lake water by phytoplankton. J Ecol 64:79–121

    Google Scholar 

  • Tessier A (1992) Sorption of trace elements on natural particles in oxic environments. In: Buffle J, van Leeuwen HP (eds) Environmental particles, vol l. Lewis, Boca Raton, pp 425–453

    Google Scholar 

  • Tessier A, Rapin F, Carignan R (1985) Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochim Cosmochim Acta 49:183–194

    CAS  Google Scholar 

  • Tessier A, Carignan R, Dubreuil B, Rapin F (1989) Partitioning of zinc between the water column and the oxic sediments in lakes. Geochim Cosmochim Acta 53:1511–1522

    CAS  Google Scholar 

  • Tessier A, Couillard Y, Campbell PGC, Auclair JC (1993) Modeling Cd partitioning in oxic lake sediments and Cd concentrations in the freshwater bivalve Anodonta grandis. Limnol Oceanogr 38: 1–17

    CAS  Google Scholar 

  • Tipping E, Heaton MJ (1983) The adsorption of aquatic humic substances by two oxides of manganese. Geochim Cosmochim Acta 47:1393–1397

    CAS  Google Scholar 

  • Tipping E, Ohnstad M (1984) Colloid stability of iron oxide particles from a freshwater lake. Nature 308: 266–268

    CAS  Google Scholar 

  • Tipping E, Woof C, Cooke D (1981) Iron oxide from a seaonally anoxic lake. Geochim Cosmochim Acta 45:1411–1419

    CAS  Google Scholar 

  • Tipping E, Thompson DW, Davison W (1984) Oxidation products of Mn(II) in lakes. Chern Geol 44:359–383

    CAS  Google Scholar 

  • Waite TD (1988) Photochemical effects on the mobility and fate of heavy metals in the aquatic environment. Environ Technol Lett 9:977–982

    CAS  Google Scholar 

  • Waychunas GA, Rea BA, Fuller CC, Davis JA (1993) Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta 57: 2251–2269

    CAS  Google Scholar 

  • Webster JG (1992) Trace metals at the oxic/anoxic-H2S boundary in Lake Vanda, Antarctica. In: Kharaka YK, Maest AS (eds) Water-rock interaction, vol l. Low temperature environments. Proc 7th Int Symp Water-Rock Interaction, Balkema, Rotterdam, pp 527–530

    Google Scholar 

  • Weiss RF, Carmack EC, Koropalov VM (1991) Deepwater renewal and biological production in Lake Baikal. Nature 349:665–669

    CAS  Google Scholar 

  • Weres O, Jaouni A-R, Tsao L (1989) The distribution, speciation and geochemical cycling of selenium in a sedimentary environment, Kesterton Reservoir, California, USA. Appl Geochem 4:543–563

    Google Scholar 

  • White JR, Driscoll CT (1985) Lead cycling in an acidic Adirondack lake. Environ Sci Technol 19: 1182–1187

    CAS  Google Scholar 

  • Williams TM (1992) Diagenetic metal profiles in recent sediments of a Scottish freshwater loch. Environ Geol Water Sci 20:117–123

    CAS  Google Scholar 

  • Windom HL, Byrd JT, Smith Jr RG, Huan F (1991) Inadeqijacy of NASQAN data for assessing metal trends in the nation’s rivers. Environ Sci Technol 25:1137–1142

    CAS  Google Scholar 

  • Yagi A (1988) Dissolved organic manganese in the anoxic hypolimnion of Lake Fukami-ike. Jpn J LimnoI49:149–156

    CAS  Google Scholar 

  • Yagi A, Shimodaira I (1986) Seasonal changes of iron and manganese in Lake Fukami-ike - occurrence of turbid manganese layer. Jpn J Limnol 47:279–289

    CAS  Google Scholar 

  • Young LB, Harvey HH (1992) The relative importance of manganese and iron oxides and organic matter in the sorption of trace metals by surficial lake sediments. Geochim Cosmochim Acta 56:1175–1186

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg New York

About this chapter

Cite this chapter

Hamilton-Taylor, J., Davison, W. (1995). Redox-Driven Cycling of Trace Elements in Lakes. In: Lerman, A., Imboden, D.M., Gat, J.R. (eds) Physics and Chemistry of Lakes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85132-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85132-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85134-6

  • Online ISBN: 978-3-642-85132-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics