Skip to main content

Tumor Necrosis Factor and Other Cytokines in Septic Syndrome

  • Chapter
Sepsis

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 18))

Abstract

Historically, interventions in the septic syndrome have consisted of attemps to deal with the infection that causes it. In some respects, a great deal of sophistication has been acquired, since antimicrobial therapy has remained effective despite the evolving resistance of pathogenic organisms. Even in patients who lack immune mechanisms necessary for protection against microbes, an “artificial immune system” may be rendered pharmacologically through the use of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morrison DC, Ryan JL (1979) Bacterial endotoxins and host immune responses. Adv Immunol 28:293–450.

    PubMed  CAS  Google Scholar 

  2. Morrison DC, Ulevitch RJ (1978) The effects of bacterial endotoxins on host mediation systems. Am J Pathol 93:526–617.

    PubMed  CAS  Google Scholar 

  3. Michalek SM, Moore RN, McGhee JR, Rosenstreich DL, Mergenhagen SE (1980) The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxin. J Infect Dis 141:55–63.

    PubMed  CAS  Google Scholar 

  4. Watson J, Riblet R, Taylor BA (1977) The response of recombinant inbred strains of mice to bacterial lipopolysaccharides. J Immunol 118:2088–2093.

    PubMed  CAS  Google Scholar 

  5. Watson J, Kelly K, Largen M, Taylor BA (1978) The genetic mapping of a defective LPS response gene in C3H/HeJ mice. J Immunol 120:422–424.

    PubMed  CAS  Google Scholar 

  6. Freudenberg MA, Keppler D, Galanos C (1986) Requirement for lipopolysaccharide-responsive macrophages in galactosamine-induced sensitization to endotoxin. Infect Immun 51:891–895.

    PubMed  CAS  Google Scholar 

  7. Beck G, Benach JL, Habicht GS (1989) Isolation of interleukin 1 from joint fluids of patients with lyme disease. J Rheumatol 16:800–806.

    PubMed  CAS  Google Scholar 

  8. Wright SD, Jong MTC (1986) Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide. J Exp Med 164:1876–1888.

    PubMed  CAS  Google Scholar 

  9. Wright SD, Tobias PS, Ulevitch RJ, Ramos RA (1989) Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particle for recognition by a novel receptor on macrophages. J Exp Med 170:1231–1241.

    PubMed  CAS  Google Scholar 

  10. Schumann RR, Leong SR, Flaggs GW et al (1990) Structure and function of lipopolysaccharide binding protein. Science 249:1429–1431.

    PubMed  CAS  Google Scholar 

  11. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433.

    PubMed  CAS  Google Scholar 

  12. Ferrero E, Goyert SM (1988) Nucleotide sequence of the gene encoding the monocyte differentiation antigen, CD14. Nucleic Acids Res 16:4173.

    PubMed  CAS  Google Scholar 

  13. Tobias PS, Ulevitch RJ (1993) Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology 187:227–232.

    PubMed  CAS  Google Scholar 

  14. Tobias PS, Soldau K, Kline L, Lee J-D, Kato K, Martin TP, Ulevitch RJ (1993) Cross-linking of lipopolysaccharide (LPS) to CD14 on THP-1 cells mediated by LPS-binding protein. J Immunol 150:3011–3021.

    PubMed  CAS  Google Scholar 

  15. Lee JD, Kravchenko V, Kirkland TN et al (1993) Glycosylphosphatidylinositol anchored or integral membrane forms of CD14 mediate identical cellular responses to endotoxin. Proc Natl Acad Sci USA (in press).

    Google Scholar 

  16. Birkland TP, Cornwell RD, Golenbock DT, Proctor RA (1990) Comparative study of lipopolysaccharide-, lipid IVa-, and lipid X-induced tumor necrosis factor production in murine macrophage-like cell lines. Adv Exp Med Biol 256:399–402.

    PubMed  CAS  Google Scholar 

  17. Riedo FX, Munford RS, Campbell WB, Reisch JS, Chien KR, Gerard RD (1990) Deacylated lipopolysaccharide inhibits plasminogen activator inhibitor-1, prostacyclin, and prostaglandin E2 induction by lipopolysaccharide but not by tumor necrosis factor-α. J Immunol 144:3506–3512.

    PubMed  CAS  Google Scholar 

  18. Munford RS, Hall CL (1986) Detoxification of bacterial lipopolysaccharides (endotoxins) by a human neutrophil enzyme. Science 234:203–205.

    PubMed  CAS  Google Scholar 

  19. Radolf JD, Norgard MV, Brandt ME, Isaacs RD, Thompson PA, Beutler B (1991) Lipoproteins of Borrelia Burgdorferi and Treponema Pallidum activate cachectin/TNF synthesis: analysis using a CAT reporter construct. J Immunol 147:1968–1974.

    PubMed  CAS  Google Scholar 

  20. Wallis RS, Amir-Tahmasseb M, Elmer JJ (1990) Induction of interleukin 1 and tumor necrosis factor by mycobacterial proteins: the monocyte western blot. Proc Natl Acad Sci USA 87:3348–3352.

    PubMed  CAS  Google Scholar 

  21. Valone SE, Rich EA, Wallis RS, Ellner JJ (1988) Expression of tumor necrosis factor in vitro by human mononuclear phagocytes stimulated with whole Mycobacterium bovis BCG and myobacterial antigens. Infect Immun 56:3313–3315.

    PubMed  CAS  Google Scholar 

  22. Grau GE, Parida SK, Pointaire P, Barnes PF, Modlin RL (1992) TNF and mycobacteria. In: Beutler B (ed) Tumor necrosis factors: The molecules and their emerging role in medicine. Raven, New York, pp 329–340.

    Google Scholar 

  23. Taverne J, Bate CAW, Sarkar DA, Meager A, Rook GAW, Playfair JHL (1990) Human and murine macrophages produce TNF in response to soluble antigens of Plasmodium falciparum. Parasite Immunol 12:33–43.

    PubMed  CAS  Google Scholar 

  24. Kwiatkowski D, Cannon JG, Manogue KR, Cerami A, Dinarello CA, Greenwood BM (1989) Tumour necrosis factor production in Falciparum malaria and its association with schizont rupture. Clin Exp Immunol 77:361–366.

    PubMed  CAS  Google Scholar 

  25. Taverne J, Bate CAW, Playfair JHL (1989) Induction of TNF in vitro as a model for the identification of toxic malaria antigens. Lymphokine Res 8:317–322.

    PubMed  CAS  Google Scholar 

  26. Bate CAW, Taverne J, Playfair JHL (1988) Malarial parasites induce TNF production by macrophages. Immunology 64:227–231.

    PubMed  CAS  Google Scholar 

  27. Hotez PJ, Le Trang N, Fairlamb AH, Cerami A (1984) Lipoprotein lipase suppression in 3T3-L1 cells by a haematoprotozoan-induced mediator from peritoneal exudate cells. Parasite Immunol 6:203–209.

    PubMed  CAS  Google Scholar 

  28. Goldberg SS, Cordeiro MN, Silva Pereira AA, Mares-Guia ML (1983) Release of lipopolysaccharide (LPS) from cell surface of Trypanosoma cruzi by EDTA. Int J Parasitol 13:11–18.

    PubMed  CAS  Google Scholar 

  29. Ketteridge DS (1978) Lipopolysaccharide from Trypanosoma cruzi. Trans R Soc Trop Med Hyg 72:101–102.

    PubMed  CAS  Google Scholar 

  30. Barrett TJ, Potter ME, Strockbine NA (1990) Evidence for participation of the macrophage in Shiga-like toxin II-induced lethality in mice. Microb Pathog 9:95–103.

    PubMed  CAS  Google Scholar 

  31. Harel Y, Weinberg A, Silva M, Giroir B, Beutler B (submitted 1993) A reporter transgene indicates renal-specific induction of TNF by Shiga-like toxin: possible involvement of TNF in hemolytic-uremic syndrome (abstract).

    Google Scholar 

  32. Fast DJ, Schlievert PM, Nelson RD (1989) Toxic shock syndrome-associated staphylococcal and streptococcal pyrogenic toxins are potent inducers of tumor necrosis factor production. Infect Immun 57:291–294.

    PubMed  CAS  Google Scholar 

  33. Ikejima T, Dinarello CA, Gill DM, Wolff SM (1984) Induction of human interleukin-1 by a product of Staphylococcus aureus associated with toxic shock syndrome. J Clin Invest 73:1312–1320.

    PubMed  CAS  Google Scholar 

  34. Hirose A, Ikejima T, Gill DM (1985) Established macrophaselike cell lines synthesize interleukin-1 in response to toxic shock syndrome toxin. Infection Immunity 50:765–770.

    PubMed  CAS  Google Scholar 

  35. Nedwin GE, Svedersky LP, Bringman TS, Palladino MA, Goeddel DV (1985) Effect of interleukin 2, interferon-γ and mitogens on the production of tumor necrosis factors a and β. J Immunol 135:2492–2497.

    PubMed  CAS  Google Scholar 

  36. Mukaida N, Hishinuma A, Zachariae CO, Oppenheim JJ, Matsushima K (1991) Regulation of human interleukin 8 gene expression and binding of several other members of the intercrine family to receptors for interleukin-8. Adv Exp Med Biol 305:31–38.

    PubMed  CAS  Google Scholar 

  37. Oppenheim JJ, Zachariae CO, Mukaida N, Matsushima K (1991) Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu Rev Immunol 9:617–648.

    PubMed  CAS  Google Scholar 

  38. Dinarello CA (1984) Interleukin-1. Rev Infect Dis 6:51–95.

    PubMed  CAS  Google Scholar 

  39. Duff G (1985) Many roles for interleukin-1. Nature 313:352–353.

    PubMed  CAS  Google Scholar 

  40. A’Uison AC (1985) The interleukin-1 family of molecules. BioEssays 3:260–262.

    Google Scholar 

  41. Oppenheim JJ, Kovacs EJ, Matsushima K, Durum SK (1986) There is more than one interleukin 1. Immunol Today 7:45–56.

    CAS  Google Scholar 

  42. Unanue ER, Allen PM (1987) The basis for the immunoregulatory role of macrophages and other accessory cells. Science 236:551–557.

    PubMed  CAS  Google Scholar 

  43. Martin M, Resch K (1988) Interleukin 1: more than a mediator between leukocytes. TIPS 9:171–177.

    PubMed  CAS  Google Scholar 

  44. Von Hoff DD, Fleming TR, Macdonald JS et al (1990) Phase II evaluation of recombinant gamma-interferon in patients with advanced pancreatic carcinoma: a Southwest Oncology Group study. J Biol Response Mod 9:584–587.

    Google Scholar 

  45. Williams N, Bertoncello I, Jackson H, Arnold J, Kavnoudias H (1992) The role of interleukin 6 in megakaryocyte formation, megakaryocyte development and platelet production. Ciba Found Symp 167:160–170.

    PubMed  CAS  Google Scholar 

  46. Zeidler C, Kanz L, Hurkuck F et al (1992) In vivo effects of interleukin-6 on thrombopoiesis in healthy and irradiated primates. Blood 80:2740–2745.

    PubMed  CAS  Google Scholar 

  47. Hill RJ, Warren MK, Stenberg P et al (1991) Stimulation of megakaryocytopoiesis in mice by human recombinant interleukin-6. Blood 77:42–48.

    PubMed  CAS  Google Scholar 

  48. Imai T, Koike K, Kubo T et al (1991) Interleukin-6 supports human megakaryocytic proliferation and differentiation in vitro. Blood 78:1969–1974.

    PubMed  CAS  Google Scholar 

  49. Stahl CP, Zucker-Franklin D, Evatt BL, Winton EF (1991) Effects of human interleukin-6 on megakaryocyte development and thrombocytopoiesis in primates. Blood 78:1467–1475.

    PubMed  CAS  Google Scholar 

  50. Andus T, Geiger T, Hirano T, Kishimoto T, Heinrich PC (1988) Action of recombinant human interleukin 6, interleukin 1β and tumor necrosis factor α on the mRNA induction of acute-phase proteins. Eur J Immunol 18:739–746.

    PubMed  CAS  Google Scholar 

  51. Matthews N (1978) Tumour-necrosis factor from the rabbit. II. Production by monocytes. Br J Cancer 38:310–315.

    PubMed  CAS  Google Scholar 

  52. Matthews N (1981) Production of an anti-tumour cytotoxin by human monocytes. Immunology 44:135–142.

    PubMed  CAS  Google Scholar 

  53. Matthews N (1981) Tumour-necrosis factor from the rabbit. V. Synthesis in vitro by mononuclear phagocytes from various tissues of normal and BCG-injected rabbits. Br J Cancer 44:418–424.

    PubMed  CAS  Google Scholar 

  54. Satomi N, Haranaka K, Kunii O (1981) Research on the production site of tumor necrosis factor (TNF). Jpn J Exp Med 51:317–322.

    PubMed  CAS  Google Scholar 

  55. Fisch H, Gifford GE (1983) In vitro production of rabbit macrophage tumor cell cytotoxin. Int J Cancer 32:105–112.

    PubMed  CAS  Google Scholar 

  56. Beutler B, Greenwald D, Hulmes JD et al (1985) Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316:552–554.

    PubMed  CAS  Google Scholar 

  57. Sauder DN (1984) Epidermal cytokines: properties of epidermal cell thymocyte-activating factor (ETAF). Lymphokine Res 3:145–151.

    PubMed  CAS  Google Scholar 

  58. Kupper TS, Ballard DW, Chua AO et al (1986) Human keratinocytes contain mRNA indistinguishable from monocyte interleukin 1 alpha and beta mRNA. J Exp Med 164:2095–2100.

    PubMed  CAS  Google Scholar 

  59. Fong Y, Tracey KJ, Moldawer LL et al (1989) Antibodies to cachectin/tumor necrosis factor reduce interleukin 1β and interleukin 6 appearance during lethal bacteremia. J Exp Med 170:1627–1633.

    PubMed  CAS  Google Scholar 

  60. Beutler B, Milsark IW, Cerami A (1985) Passive immunization against cachectin/tumor necrosis factor (TNF) protects mice from the lethal effect of endotoxin. Science 229:869–871.

    PubMed  CAS  Google Scholar 

  61. Tracey KJ, Fong Y, Hesse DG et al (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 330:662–666.

    PubMed  CAS  Google Scholar 

  62. Mathison JC, Wolfson E, Ulevitch RJ (1988) Participation of tumor necrosis factor in the mediation of gram negative bacterial lipopolysaccharide-induced injury in rabbits. J Clin Invest 81:1925–1937.

    PubMed  CAS  Google Scholar 

  63. Exley AR, Cohen J, Buurman W et al (1990) Monoclonal antibody to TNF in severe septic shock. Lancet 335:1275–1277.

    PubMed  CAS  Google Scholar 

  64. Opal SM, Cross AS, Kelly NM, Sadoff JC, Bodmer MW, Palardy JE, Victor GH (1990) Efficacy of a monoclonal antibody directed against tumor necrosis factor in protecting neutropenic rats from lethal infection with Pseudomonas aeruginosa. J Infect Dis 161:1148–1152.

    PubMed  CAS  Google Scholar 

  65. Ashkenazi A, Marsters SA, Capon DJ et al (1991) Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. Proc Natl Acad Sci USA 88:10535–10539.

    PubMed  CAS  Google Scholar 

  66. Ohlsson K, Bjork P, Bergenfeldt M, Hageman R, Thompson RC (1990) Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 348:550–552.

    PubMed  CAS  Google Scholar 

  67. Wakabayashi G, Gelfand JA, Burke JF, Thompson RC, Dinarello CA (1991) A specific receptor antagonist for interleukin 1 prevents Escherichia coli-induced shock in rabbits. FASEB J 5:338–343.

    PubMed  CAS  Google Scholar 

  68. Redmond HP, Chavin KD, Bromberg JS, Daly JM (1991) Inhibition of macrophage-activating cytokines is beneficial in the acute septic response. Ann Surg 214:502–508.

    PubMed  CAS  Google Scholar 

  69. Hagmann W, Keppler D (1982) Leukotriene antagonists prevent endotoxin lethality. Naturwissenschaften 69:594–595.

    PubMed  CAS  Google Scholar 

  70. Doebber TW, Wu MS, Robbins JC, Choy BM, Chang MN, Shen TY (1985) Platelet activating factor (PAF) involvement in endotoxin-induced hypotension in rats. Studies with PAF-receptor antagonist kadsurenone. Biochem Biophys Res Commun 127:799–808.

    PubMed  CAS  Google Scholar 

  71. Fleisch JH, Rinkema LE, Haisch KD et al (1985) LY171883, 1-<2-hydroxy-3-propyl-4-<4-(lH-tetrazol-5-yl)butoxy>phene, an orally active leukotriene D4 antagonist. J Pharmacol Exp Ther 233:148–157.

    PubMed  CAS  Google Scholar 

  72. Braquet P, Etienne A, Mencia-Huerta J-M, Clostre F (1988) Effects of the specific platelet-activating factor antagonists, BN 52021 and BN 52063, on various experimental gastrointestinal ulcerations. Eur J Pharmacol 150:269–276.

    PubMed  CAS  Google Scholar 

  73. Terashita Z-I, Stahl GL, Lefer AM (1988) Protective effects of a platelet activating factor (PAF) antagonist and its combined treatment with prostaglandin (PG) E1 in traumatic shock. J Cardiovas Pharmacol 12:505–511.

    CAS  Google Scholar 

  74. Heuer H (1989) Effect of a new and specific paf-antagonist, WEB 2086, on paf and endotoxin/tumor necrosis factor induced changes in mortality and intestinal transit velocity. Prog Clin Biol Res 308:919–924.

    PubMed  CAS  Google Scholar 

  75. Dinarello CA, Cannon JG, Wolff SM et al (1986) Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin-1. J Exp Med 163:1433–1450.

    PubMed  CAS  Google Scholar 

  76. Shalaby MR, Waage A, Aarden L, Espevik T (1989) Endotoxin, tumor necrosis factor-α and interleukin 1 induce interleukin 6 production in vivo. Clin Immunol Immunopathol 53:488–498.

    PubMed  CAS  Google Scholar 

  77. Cicco NA, Lindemann A, Content J et al (1990) Inducible production of interleukin-6 by human polymorphonuclear neutrophils: role of granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-alpha. Blood 75:2049–2052.

    PubMed  CAS  Google Scholar 

  78. Zhang Y, Lin J-X, Vilcek J (1990) Interleukin-6 induction by tumor necrosis factor and interleukin-1 in human fibroblasts involves activation of a nuclear factor binding to a kappaB-like sequence. Mol Cell Biol 10:3818–3823.

    PubMed  CAS  Google Scholar 

  79. Shannon MF, Pell LM, Lenardo MJ, Kuczek ES, Occhiodoro FS, Dunn SM, Vadas MA (1990) A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes. Mol Cell Biol 10:2950–2959.

    PubMed  CAS  Google Scholar 

  80. Baeverle PA, Baltimore D (1991) The physiology of the NF-kB transcription factor. In: Cohen P, Foulkes JG (eds) Hormonal control regulation of gene expression. Biomedical Press, Elsevier/North Holland, pp 409–432.

    Google Scholar 

  81. Lenardo MJ, Baltimore D (1989) NF-KB: A pleiotropic mediator of inducible and tissue-specific gene control. Cell 58:227–229.

    PubMed  CAS  Google Scholar 

  82. Lenardo MJ, Fan C-M, Maniatis T, Baltimore D (1989) The involvement of NF-KB in β-interferon gene regulation reveals its role as widely inducible mediator of signal transduction. Cell 57:287–294.

    PubMed  CAS  Google Scholar 

  83. Mathison JC, Virca GD, Wolfson E, Tobias PS, Glaser K, Ulevitch RJ (1990) Adaptation to bacterial lipopolysaccharide controls lipopolysaccharide-induced tumor necrosis factor production in rabbit macrophages. J Clin Invest 85:1108–1118.

    PubMed  CAS  Google Scholar 

  84. Beutler B, Krochin N, Milsark IW, Luedke C, Cerami A (1986) Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science 232:977–980.

    PubMed  CAS  Google Scholar 

  85. Han J, Huez G, Beutler B (1991) Interactive effects of the TNF promoter and 3′-untranslated regions. J Immunol 146:1843–1848.

    PubMed  CAS  Google Scholar 

  86. Han J, Thompson P, Beutler B (1990) Dexamethasone and pentoxifylline inhibit en-dotoxin-induced cachectin/TNF synthesis at separate points in the signalling pathway. J Exp Med 172:391–394.

    PubMed  CAS  Google Scholar 

  87. Goldfeld AE, Maniatis T (1989) Coordinate viral induction of tumor necrosis factor α and interferon β in human B cells and monocytes. Proc. Natl Acad Sci USA 86:1490–1494.

    PubMed  CAS  Google Scholar 

  88. Waage A, Sorensen M, Stordal B (1990) Differential effect of oxpentifylline on tumour necrosis factor and interleukin-6 production. Lancet 335:543.

    PubMed  CAS  Google Scholar 

  89. Semmler J, Wachtel H, Endres S (1993) The specific type IV phosphodiesterase inhibitor rolipram suppresses tumor necrosis factor-α production by human mononuclear cells. Int J Immunopharmacol 15:409–413.

    PubMed  CAS  Google Scholar 

  90. Prada J, Prager C, Neifer S, Bienzle U, Kremsner PG (1993) Production of interleukin-6 by human and murine mononuclear leukocytes stimulated with Plasmodium antigens is enhanced by pentoxifylline, and tumor necrosis factor secretion is reduced. Infect Immun 61:2737–2740.

    PubMed  CAS  Google Scholar 

  91. Caput D, Beutler B, Hartog K, Brown-Shimer S, Cerami A (1986) Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA 83:1670–1674.

    PubMed  CAS  Google Scholar 

  92. Shaw G, Kamen R (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667.

    PubMed  CAS  Google Scholar 

  93. Han J, Brown T, Beutler B (1990) Endotoxin-responsive sequences control cachectin/ TNF biosynthesis at the translational level. J Exp Med 171:465–475.

    PubMed  CAS  Google Scholar 

  94. Bazzoni F, Jongeneel CV, Shakhov A, Beutler B (1993) Induction of the TNF gene by ultraviolet light. J Clin Invest (submitted).

    Google Scholar 

  95. Bohjanen PR, Petryniak B, June CH, Thompson CB, Lindsten T (1991) An inducible cytoplasmic factor (AU-B) binds selectively to AUUUA multimers in the 3′-untranslated region of lymphokine mRNA. Mol Cell Biol 11:3288–3295.

    PubMed  CAS  Google Scholar 

  96. Cseh K, Beutler B (1989) Alternative cleavage of the cachectin/TNF propeptide results in a larger, inactive form of secreted protein. J Biol Chem 264:16256–16260.

    PubMed  CAS  Google Scholar 

  97. Kriegler M, Perez C, DeFay K, Albert I, Lu SD (1988) A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: Ramifications for the complex physiology of TNF. Cell 53:45–53.

    PubMed  CAS  Google Scholar 

  98. Perez C, Albert I, DeFay K, Zachariades N, Gooding L, Kriegler M (1990) A nonse-cretable cell surface mutant of tumor necrosis factor (TNF) kills by cell to cell contact. Cell (in press).

    Google Scholar 

  99. Eck MJ, Sprang SR (1989) The structure of tumor necrosis factor-alpha at 2.6A resolution: implications for receptor binding. J Biol Chem 264:17595–17605.

    PubMed  CAS  Google Scholar 

  100. Chaplin DD, Hogquist KA (1992) Interactions between TNF and interleukin-1. In: Beutler B (ed) Tumor necrosis factors: the molecules and their emerging role in medicine. Raven, New York, pp 197–220.

    Google Scholar 

  101. Black R, Kronheim S, Sleath P, Greenstreet T, Virca GD, March C, Küpper T (1991) The proteolytic activation of interleukinl β. Agents Actions [Suppl] 35:85–89.

    CAS  Google Scholar 

  102. Molineaux SM, Casano FJ, Rolando AM et al (1993) Interleukin 1 β (IL1 β) processing in murine macrophages requires a structurally conserved homologue of human ILl beta converting enzyme. Proc Natl Acad Sci USA 90:1809–1813.

    PubMed  CAS  Google Scholar 

  103. Howard AD, Chartrain N, Ding GF, Kostura MJ, Limjuco G, Schmidt JA, Tocci MJ (1991) Probing the role of interleukin-1 β convertase in interleukin-1 beta secretion. Agents Actions [Suppl] 35:77–83.

    CAS  Google Scholar 

  104. Thornberry NA, Bull HG, Calaycay JR et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 β processing in monocytes. Nature 356:768–774.

    PubMed  CAS  Google Scholar 

  105. Reiter LA, Martin JJ (1993) Interleukin-1β converting enzyme. Synthesis of hydroxyethyl dipeptide surrogate-containing compounds as potential ICE inhibitors. Int J Pept Protein Res 41:476–483.

    CAS  Google Scholar 

  106. Meichle A, Schütze S, Hensel G, Brunsing D, Krönke M (1990) Protein kinase C-independent activation of nuclear factor kappaB by tumor necrosis factor. J Biol Chem 265:8339–8343.

    PubMed  CAS  Google Scholar 

  107. Hohmann H-P, Remy R, Poschl B, van Loon APGM (1990) Tumor necrosis factors-α and β bind to the same two types of tumor necrosis factor receptors and maximally activate the transcription factor NF-kB at low receptor occupancy and within minutes after receptor binding. J Biol Chem 265:15183–15188.

    PubMed  CAS  Google Scholar 

  108. Castigli E, Pahwa R, Good RA, Geha RS, Chatila TA (1993) Molecular basis of a multiple lymphokine deficiency in a patient with severe combined immunodeficiency. Proc Natl Acad Sci USA 90:4728–4732.

    PubMed  CAS  Google Scholar 

  109. Anderson DC, Springer TA (1987) Leukocyte adhesion deficiency on inherited defect in the MAC-1, LFA-1, and P150.95 glycoproteins. Annu Rev Med 38:175.

    PubMed  CAS  Google Scholar 

  110. Stern DM, Nawroth PP (1986) Modulation of endothelial hemostatic properties by tumor necrosis factor. J Exp Med 163:740–745.

    PubMed  Google Scholar 

  111. Alzani R, Corti A, Grazioli L, Cozzi E, Ghezzi P, Marcucci F (1993) Suramin induces deoligomerization of human tumor necrosis factor a. J Biol Chem 268:12526–12529.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beutler, B. (1994). Tumor Necrosis Factor and Other Cytokines in Septic Syndrome. In: Reinhart, K., Eyrich, K., Sprung, C. (eds) Sepsis. Update in Intensive Care and Emergency Medicine, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85036-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85036-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85038-7

  • Online ISBN: 978-3-642-85036-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics