Skip to main content

Radiosensivity of Tumor Cells: The Predictive Value of SF2

  • Chapter
Current Topics in Clinical Radiobiology of Tumors

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Early the history of radiation therapy, clinicians recognized that some tumor entities can be controlled considerably more easily by radiation therapy than others (Wetterer 1913–1914; Holthusen 1936; Paterson 1948.) Table 8.1 summarizes the ranking of the radiosensitivities of selected tumor histologies. The judgment of the responsiveness of different tumors has changed little from Paterson’s textbook, published in 1948, to recent reviwes such as Wang’s textbook from 1988. Today, knowledge of the relative radiosensitivities of tumors of given histologies and grades, together with careful assessment of tumor size, stage, location, and patient characteristics such as sex, age, hemoglobin level, and Karnofsky score, forms the basis of prediction of the outcome of radiation therapy in individual patients (Peters et al. 1986, 1988; Suit and Walker 1988; Bentzen et al. 1991). Typical examples of radiosensitive tumors are seminomas and lymphomas, with total doses of 30–45 Gy being highly effective in achieving local tumor control (Rubin etal. 1974; Perez and Brady 1992). Adenocarcinomas and squamous cell carcinomas are generally considered moderately radiosensitive: if not too large, these tumors are radiocurable by doses between 50 and 75Gy (Rubin etal. 1974; Perez and Brady 1992). A uniquely radioresistant tumor is glioblastoma multiforme: This entity is almost never controlled permanently by radiation doses between 60 and 80 Gy (Davis 1989), and in-field recurrences have been reported even after doses as high as 115 Gy (Loeffler et al. 1990a, b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadir R, Hakami N (1983) Ataxia telangiectasia with cancer. An indication for reduced radiotherapy and chemotherapy doses. Br J Radiol 56: 343–345

    Article  PubMed  CAS  Google Scholar 

  • Allalunis-Turner MJ, Pearcey RG, Barron GM, Buryn DA, Babiak JC, Honore LH (1991) Inherent radiosensitivity testing of tumor biopsies obtained from patients with carcinoma of the cervix or endometrium. Radiother Oncol 22: 201–205

    Article  PubMed  CAS  Google Scholar 

  • Allalunis-Turner MJ, Barron MG, Day RS, Fulton DS, Urtasun RC (1992a) Radiosensitivity testing of human primary brain tumor specimens. Int J Radiat Oncol Biol Phys 23: 339–343

    Article  PubMed  CAS  Google Scholar 

  • Allalunis-Turner MJ, Day RS, Pearcey RG, Urtasun RC (1992b) Radiosensitivity testing in gynecological tumors and malignant gliomas. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research, a twentieth-century perspective. Academic, San Diego, pp 712–715

    Google Scholar 

  • Alper T (ed) (1975) Cell survival after low doses of radiation. John Wiley, London

    Google Scholar 

  • Arlett CF, Priestley A (1985) An assessment of the radiosensitivity of ataxic telangiectasia heterozygotes. In: Gatti RA, Swift M (eds) Ataxic telangiectaxic genetics: neuropathology and immunology of a degenerative disease of childhood. Alan R. Liss, New York, pp 101–109

    Google Scholar 

  • Baker FL, Spitzer G, Ajani JA et al. (1986) Drug and radiation sensitivity measurements of successful primary monolayer culturing of human tumor cells using cell adhesive matrix and supplemented medium. Cancer Res 46: 1263–1274

    PubMed  CAS  Google Scholar 

  • Baumann M, duBois W, Suit HD (1990) Response of a human squamous cell carcinoma xenograft to irradiation at different sizes: relationship of clonogenic cells, cellular radiation sensitivity in vivo, and tumor rescuing units. Radiat Res 123: 325–330

    Article  PubMed  CAS  Google Scholar 

  • Baumann M, duBois W, Pu A, Freeman J, Suit HD (1992a) Response of xenografts of human malignant gliomas and squamous cell carcinomas to fractionated irradiation. Int J Radiat Oncol Biol Phys 23: 803–809

    Article  PubMed  CAS  Google Scholar 

  • Baumann M, Pu A, duBois W, Suit HD (1992b) Quantitative evaluation of the effects of cotransplantation of heavily irradiated tumor cells and of different immunosuppressive measures on the xenotransplantability of a human squamous cell carcinoma into athymic nude mice. In: Fiebig HH, Berger D (eds) Immunodeficient mice in oncology. Karger, Basel (Contributions to Oncology, vol 42, pp 89–107)

    Google Scholar 

  • Begg A (1987) Principles and practices of the tumor growth delay assay. In: Kallman RF (ed) Rodent tumor models in experimental cancer therapy. Pergamon, New York, pp 114–121

    Google Scholar 

  • Bellamy AS, Whelan RDH, Hill BT (1984) Studies of variation in inherent sensitivities to radiation, 5-fluorouracil and methotrexate in a series of human and murine tumor cell lines in vitro. Int J Radiat Oncol Biol Phys 10: 87–93

    PubMed  CAS  Google Scholar 

  • Bentzen SM, (1992) Steepness of the clinical dose-control curve and variation in the in vitro radiosensitity of head and neck squamous cell carcinoma. Int J Radiat Biol 61: 417–423

    Article  PubMed  CAS  Google Scholar 

  • Bentzen SM, Thames HD, Overgaard J (1980) Does variation in the in vitro cellular radiosensitivity explain the shallow clinical dose-control curve for malignant melanoma. Int J Radiat Biol 57: 117–126

    Article  Google Scholar 

  • Bentzen SM, Johansen L, Overgaard J, Thames HD (1991) Clinical radiobiology of squamous cell carcinoma of the oropharynx. Int J Radiat Oncol Biol Phys 20: 1197–1206

    Article  PubMed  CAS  Google Scholar 

  • Berry RJ (1974) Population distribution in tumors and normal tissues: a guide to tissue radiosensitivity. In: Friedmann M (ed) The biological and clinical basis of radiosensitivity. Charles C. Thomas, Cicago, 111, pp 141–155

    Google Scholar 

  • Brahme A (1984) Dosimetric precision requirements in radiation therapy. Acta Radio Oncol 23: 379–391

    Article  CAS  Google Scholar 

  • Bristow RG, Hill RP (1990) Comparison between in vitro radiosensitivity and in vivo radioresponse in murine tumor cell lines. II: In vivo radioresponse following fractionated treatment and in vitro/in vivo correlations. Int J Radiat Oncol Biol Phys 18: 331–345

    Article  PubMed  CAS  Google Scholar 

  • Bristow RG, Hardy PA, Hill RP (1990) Comparison between in vitro radiosensitivity and in vivo radioresponse of murine tumor cell lines. I. Parameters of in vitro radiosensitivity and endogenous cellular glutathione levels. Int J Radiat Oncol Biol Phys 18: 133–145

    Article  PubMed  CAS  Google Scholar 

  • Brock WA, Baker F, Peters LJ (1989) Radiosensitivity of human head and neck squamous cell carcinomas in primary culture and its potential as a predictive assay of tumor radiocurability. Int J Radiat Biol 56: 751–760

    Article  PubMed  CAS  Google Scholar 

  • Brock WA, Baker FL, Wike JL, Sivon SL, Peters LJ (1990a) Cellular radiosensitivity of primary head and neck squamous cell carcinomas and local tumor control. Int J Radiat Oncol Biol Phys 18: 1283–1286

    Article  PubMed  CAS  Google Scholar 

  • Brock WA, Wike JL, Hunter NR, Milas L (1990b) Radiosensitivity of murine tumor cells in primary culture and tumor response to single and fractionated doses of irradiation. Poster. 38 Annual Meeting of the Radiation Research Society, New Orleans

    Google Scholar 

  • Brock WA, Brown BW, Goepfert, Peters LJ (1992) In vitro radiosensitivity of tumor cells and local control by radiotherapy. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research, a twentieth-century perspective. Academic, San Diego, pp 696–699

    Google Scholar 

  • Budach W, Hartford A, Gioioso D, Freeman J, Taghian A, Suit HD (1992) Radiation response of normal tissue as a predictor of tumor response in a murine model. Cancer Res 52: 6292–6296

    PubMed  CAS  Google Scholar 

  • Courtenay VD, Mills J (1978) An in-vitro colony assay for human tumours growth in immune-suppressed mice and treated in vivo with cytotoxic agents. Br J Cancer 37: 261–268

    Article  PubMed  CAS  Google Scholar 

  • Davidson SE, West CML, Roberst SA, Hendry JH, Hunter RD (1990) Radiosensitivity testing of primary cervical carcinoma: evaluation of intra- and inter-tumour heterogeneity. Radiother Oncol 18: 349–356

    Article  PubMed  CAS  Google Scholar 

  • Davis LW (1989) Presidential address: malignant glioma—a nemesis which requires clinical and basic investigation in radiation oncology. Int J Radiat Oncol Biol Phys 16: 1355–1365

    Article  PubMed  CAS  Google Scholar 

  • Deacon J, Peckham MJ, Steel GG (1984) The radio-responsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol 2: 317–323

    Article  PubMed  CAS  Google Scholar 

  • Denekamp J (1980) Is any single in situ assay of tumor response adequate? Br J Cancer [Suppl IV]: 56–63

    Google Scholar 

  • Deschavanne PJ, Debieu S, Fertil B, Malaise EP (1986) Réévaluation of in-vitro radiosensitivity of human fibroblasts of different genetic origins. Int J Radiat Biol 50: 279–293

    Article  CAS  Google Scholar 

  • Drewinko B, Humphrey RM, Trujillo JM (1972) The radiation response of a long-term culture of human lymphoid cells. Int J Radiat Biol 21: 361–373

    Article  CAS  Google Scholar 

  • duBois W, Suit HD, Baumann M, Taghian A, Gerweck L (1991) Factors influencing the radiation response of human tumor xenografts in nude mice. Int J Radiat Oncol Biol Phys 21 [Suppl 1]: 150

    Google Scholar 

  • Dutreix J, Tubiana M, Dutreix A (1988) An approach to the interpretation of clinical data on the tumor control probability-dose relationship. Radiother Oncol 11: 239–248

    Article  PubMed  CAS  Google Scholar 

  • Elkind MM, Sutton HA (1959) X-ray damage and recovery in mammalian cells in culture. Nature 184: 1293–1295

    Article  PubMed  CAS  Google Scholar 

  • Fertil B, Malaise EP (1981) Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy. Int J Radiat Oncol Biol Phys 7: 621–629

    Google Scholar 

  • Fertil B, Malaise EP (1985) Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves. Int J Radiat Oncol Biol Phys 11: 1699–1707

    Article  PubMed  CAS  Google Scholar 

  • Fertil B, Deschavanne PJ, Lachet B, Malaise EP (1980) In vitro radiosensitivity of six human cell lines. Radiat Res 82: 297–309

    Article  PubMed  CAS  Google Scholar 

  • Fertil B, Dertinger H, Courdi A, Malaise EP (1984) Mean inactivation dose: a useful concept for intercomparison of human cell survival curves. Radiat Res 99: 73–84

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE, Kornblith PL, Burlett P, Wang J, Sweigert S (1977) Radiation sensitivity of cultured human glioblastoma cells. Radiology 125: 231–234

    PubMed  CAS  Google Scholar 

  • Girinsky T, Lubin R, Chavaudra N, et al. (1992) In vitro radiosensitivity and calculated cell growth fraction in primary cultures from head and neck cancers and cervical carcinomas: preliminary correlations with treatment outcome. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research, a twentieth- century perspective. Academic, San Diego, pp 700–705

    Google Scholar 

  • Hart RM, Kimler BF, Evans RG, Park CH 91987) Radio-therapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia. Int J Radiat Oncol Biol Phys 13: 1237–1240

    Google Scholar 

  • Hill RP, Milas L (1989) The proportion of stem cells in murine tumors. Int J Radiat Oncol Biol Phys 16: 513–528

    Article  PubMed  CAS  Google Scholar 

  • Holthusen H (1936) Erfahrungen über die Verträglichkeits-grenze für Röntgenstrahlen und deren Nutzanwendung zur Verhütung von Schäden. Strahlentherapie 57: 254–269

    Google Scholar 

  • Inada T, Kasuga T, Nojiri I, Hiraoka T, Furuse T (1977) Comparative study on radiosensitivities of cultured cell lines derived from several human tumours under hypoxic conditions. Gann 68: 357–362

    PubMed  CAS  Google Scholar 

  • Kelland LR, Steel GG (1988) Differences in radiation response among human cervix carcinoma cell lines. Radiother Oncol 13: 225–232

    Article  PubMed  CAS  Google Scholar 

  • Kellerer AM, Hug O (1972) Theory of dose-effect relations. In: Encyclopedia of medical radiology, vol 2. Springer, Berlin Heidelberg New York, pp 1–42

    Google Scholar 

  • Lehnert S, Rybka WB, Suissa S, Giambattisto D (1986) Radiation response of haematopoietic cell lines of human origin. Int J Radiat Biol 49: 423–431

    Article  CAS  Google Scholar 

  • Leith JT, Dexter DL, DeWyngaert JK, Zeman EM, Chu MY, Calabresi P, Glicksman AS (1982) Differential responses to x-irradiation of subpopulations of two heterogeneous human carcinomas in vitro. Cancer Res 42: 2556–2561

    PubMed  CAS  Google Scholar 

  • Leith JT, Padfield G, Faulkner LE, Quinn P, Michelson S (1991a) Effects of feeder cells on the x-ray sensitivity of human colon cancer cells. Radiother Oncol 21: 53–59

    Article  PubMed  CAS  Google Scholar 

  • Leith JT, Faulkner LA, Papa G, Quinn P, Michelson S (1991b) In vitro radiation survival parameters of human colon tumor cells. Int J Radiat Oncol Biol Phys 20: 203–206

    Article  PubMed  CAS  Google Scholar 

  • Loeffler JS, Alexander E, Hochberg FH, et al. (1990a) Clinical patterns of failure following stereotactic interstitial irradiation for malignant gliomas. Int J Radiat Oncol Biol Phys 19: 1455–1462

    Article  PubMed  CAS  Google Scholar 

  • Loeffler JS, Alexander E, Wen PY, et al. (1990b) Results of stereotactic brachytherapy used in the initial management of patients with glioblastoma. J Natl Cancer Inst 82: 1918–1921

    Article  PubMed  CAS  Google Scholar 

  • Malaise EP, Fertil B, Chavaudra N, Guichard M (1986) Distribution of radiation sensitivities for tumor cells of specific histological types: comparison of in vitro to in vivo data. Int J Radiat Oncol Biol Phys 12: 617–624

    Article  PubMed  CAS  Google Scholar 

  • Malaise EP, Fertil B, Chavaudra N, Brock WA, Rofstad EK, Weichselbaum RR (1989) The influence of technical factors of the in vitro measurement of intrinsic radiosensitivity of cells derived from human tumors. In: Paliwal BR, Fowler JF, Herbert DE, Kinsella TJ, Orton CG (eds) Prediction of response in radiation therapy: the physical, biological and analytical basis. American Institute of Physics, New York, pp 61–78

    Google Scholar 

  • Masuda K, Aramaki R, Takaki T, Wakisaka S (1983) Possible explanation of radioresistance of glioblastoma in situ. Int J Radiat Oncol Biol Phys 9: 255–258

    PubMed  CAS  Google Scholar 

  • Nilsson S, Carlson J, Larson B (1980) Survival of irradiated glia and glioma cells studied with a new cloning technique. Int J Radiat Biol 37: 267–279

    Article  CAS  Google Scholar 

  • Norman A, Kagan Ar, Chan SL (1988) The importance of genetics for the optimization of radiation therapy. Am J Clin Oncol 11: 84–88

    Article  PubMed  CAS  Google Scholar 

  • Paterson R (1948) The treatment of malignant disease by radium and x-rays. Edward Arnold, London

    Google Scholar 

  • Perez CA, Brady LW (1992) Overview. In: Perez CA, Brady LW (ed) Principles and practice of radiation oncology. J.B. Lippincott, Philadelphia, p 6

    Google Scholar 

  • Peters LJ, Withers HR, Thames HD, Fletcher GH (1982) Keynote address—the problem: tumor radioresistance in clinical radiotherapy. Int J Radiat Oncol Biol Phys 8: 101–108

    Article  PubMed  CAS  Google Scholar 

  • Peters LJ, Brock WA, Johnson T, Meyn RE, Tofilon PJ, Milas L (1986) Potential methods for predicting tumor radiocurability. Int J Radiat Oncol Biol Phys 12: 459–467

    Article  PubMed  CAS  Google Scholar 

  • Peters LJ, Brock WA, Chapman JD, Wilson G (1988) Predictive assays of tumor radiocurability. Am J Clin Oncol 11: 275–287

    Article  PubMed  CAS  Google Scholar 

  • Puck TT, Marcus PI (1956) Action of x-rays on mammalian cells. J Exp Med 103: 653–666

    Article  PubMed  CAS  Google Scholar 

  • Raaphorst GP, Feeley MM, DaSilva VF, Danjoux CE, Gerig LH (1989) A comparison of heat and radiation sensitivity of three human glioma cell lines. Int J Radiat Oncol Biol Phys 17: 615–622

    Article  PubMed  CAS  Google Scholar 

  • Rofstad Ek (1986) Radiation biology of malignant melanoma. Acta radio Oncol 25: 1–10

    Article  CAS  Google Scholar 

  • Rofstad EK (1989) Local tumor control following single dose irradiation of human melanoma xenograft: relationship to cellular radiosensitivity and influence of an immune response by the athymic mouse. Cancer Res 49: 3163–3167

    PubMed  CAS  Google Scholar 

  • Rofstad EK (1991) Influence of cellular radiation sensitivity on local tumor control of human melanoma xenografts given fractionated radiation treatment. Cancer Res 51: 4609–4612

    PubMed  CAS  Google Scholar 

  • Rofstad EK, Brustad TB (1987) Radioresponsiveness of human melanoma xenografts given fractionated irradiation in vivo—relationship to the initial slope of the cell survival curve. Radiother Oncol 9: 45–56

    Article  PubMed  CAS  Google Scholar 

  • Rofstad EK, Sutherland RM (1988) Radiation sensitivity of human ovarian carcinoma cell lines in vitro: effects of growth factors and hormones, basement membrane, and intercellular contact. Int J Radiat Oncol Biol Phys 15: 921–929

    Article  PubMed  CAS  Google Scholar 

  • Rofstad EK, Wahl A, Brustad T (1987) Radiation sensitivity in vitro of cells isolated from human tumor surgical specimens. Cancer Res 47: 106–110

    PubMed  CAS  Google Scholar 

  • Rubin P, Keller B, Quick R (1974) The range of prescribed tumor lethal doses in the treatment of different human tumors. In: Friedman M (ed) The biological and clinical basis of radiosensitivity. Charles C. Thomas, Springfield, 111., pp 435–484

    Google Scholar 

  • Schultz CJ, Geard CR (1990) Radioresponse of human astrocytic tumors across grade as a function of acute and chronic irradiation. Int J Radiat Oncol Biol Phys 19: 1397–1403

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JL, Beckett MA, Mustafi R, Vaughan ATM, Weichselbaum RR (1992) Evaluation of different in vitro assays of inherent sensitivity as predictors of radiotherapy response. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research, a twentieth-century perspective. Academic, San Diego, pp 716–721

    Google Scholar 

  • Seshadri R, Matthews C, Morley AA (1985) Radiation sensitivity of human malignant lymphocytes. Acta Radiol Oncol 24: 411–414

    Article  PubMed  CAS  Google Scholar 

  • Stuschke M, Budach V, Klaes W, Sack H (1992) Radiosensitivity, repair capacity, and stem cell fraction in human soft tissue tumors: an in vitro study using multicellular spheroids and the colony assay. Int J Radiat Oncol Biol Phys 23: 69–80

    Article  PubMed  CAS  Google Scholar 

  • Suit HD, Walker Am (1988) Predictors of radiation response in use today: criteria for new assays and methods of verification. In: Chapman JD, Peters LJ, Withers HR (eds) Prediction of tumor treatment response. Pergamon, New York, pp 3–19

    Google Scholar 

  • Suit HD, Shalek RJ, Wette R (1965) Radiation response of mouse mammary carcinoma evaluated in terms of cellular radiation sensitivity. In: The University of Texas HD Anderson Hospital (Ed) Cellular radiation biology. Williams and Wilkins, Baltimore, pp 514–530

    Google Scholar 

  • Suit HD, Baumann M, Skates S, Convery K (1989) Clinical interest in determinations of cellular radiation sensitivity. Int J Radiat Biol 5: 725–737

    Article  Google Scholar 

  • Suit HD, Zietman A, Tomkinson K, Ramsay J, Gerweck L, Sedlacek R (1990) Radiation response of xenografts of a human squamous cell carcinoma and a gliobolastoma multiforme: a progress report: Int J Radiat Oncol Biol Phys 18: 365–373

    PubMed  CAS  Google Scholar 

  • Suit HD, Skates S, Taghian A, OkuniefT P, Efird JT (1992) Clinical implications of heterogeneity of tumor response to radiation therapy. Radiother Oncol 25: 251–260

    Article  PubMed  CAS  Google Scholar 

  • Swift M, Reitnauer PJ, Morrell D, Chase CL (1987) Breast and other cancers in families with ataxia telangiectasia. N Engl J Med 316: 1289–1294

    Article  PubMed  CAS  Google Scholar 

  • Swift M, Morrell D, Massey RB, Chase CL (1991) Incidence of cancer in 161 families affected by ataxia telangiectasia. N Engl J Med 325: 1831–1836

    Article  PubMed  CAS  Google Scholar 

  • Szekely JG, Lobreau AU (1985) High radiosensitivity of the MOLT-4 leukaemic cell line. Int J Radiat Biol 48: 277–284

    Article  CAS  Google Scholar 

  • Taghian A, Suit HD, Pardo A, Gioioso D, Tomkinson K, duBois W, Gerweck L (1992) In vitro intrinsic radiation sensitivity of gioblastoma multiforme. Int J Radiat Oncol Biol Phys 23: 55–62

    Article  PubMed  CAS  Google Scholar 

  • Taghian A, Ramsay J, Allalunis-Turner J et al. (1993) Intrinsic radiation sensitivity may not be the major determinant of the poor clinical outcome of glioblastoma multiforme. Int J Radiat Oncol Biol Phys 25: 243–249

    Article  PubMed  CAS  Google Scholar 

  • Taylor AMR, Harnden DG, Arlett CF, Harcourt SA, Lehmann AR, Stevens S, Bridges BA (1975) Atexia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature 258: 427–429

    Article  PubMed  CAS  Google Scholar 

  • Thames HD, Peters LJ, Spanos W, Fletcher GH (1980) Dose-response curves for squamous cell carcinomas of the upper respiratory and digestive tracts. Br J Cancer 41: 35–38

    Google Scholar 

  • Thames HD, Schultheiss TE, Hendry JH, Tucker SL, Dubray BM, Brock WA (1992) Can modest escalations of dose be detected as increased tumor control? Int J Radiat Oncol Biol Phys 22: 241–246

    Article  PubMed  CAS  Google Scholar 

  • Tucker SL (1986) Is the mean inactivation dose a good measured of cell radiosensitivity? Radiat Res 105: 18–26

    Article  PubMed  CAS  Google Scholar 

  • Wang CC (1988) Clinical radiation oncology. Indications, techniques, and results. PSG, Littleton

    Google Scholar 

  • Weichselbaum RE, Epstein J, Little JB, Kornblith P (1976) Inherent cellular radiosensitivity of tumours of varying clinical curability. Am J Roentgenol 127: 1027–1032

    CAS  Google Scholar 

  • Weichselbaum RR, Greenberger JS, Schmidt A, Karpas A, Moloney WC, Little JB (1981) In vitro radiosensitivity of human leukemia cell lines. Radiology 139: 485–487

    PubMed  CAS  Google Scholar 

  • Weichselbaum RR, Beckett MA, Schwartz JL, Dritschilo A (1988) Radioresistant cells are present in head and neck carcinomas that recur after radiotherapy. Int J Radiat Oncol Biol Phys 15: 575–579

    Article  PubMed  CAS  Google Scholar 

  • Weichselbaum RR, Rotmensch J, Ahmed-Swan S, Beckett MA (1989) Radiobiological characterization of 53 human tumor cell lines. Int J Radiat Biol 56: 553–560

    Article  PubMed  CAS  Google Scholar 

  • Weichselbaum RR, Beckett MA, Vijayakumar S et al. (1990) Radiobilogical characterization of head and neck and sarcoma cells derived from patients prior to radiotherapy. Int J Radiat Oncol Biol Phys 19: 313–319

    Article  PubMed  CAS  Google Scholar 

  • West CML, Davidson SE, Hunters RD (1989) Evaluation of surviving fraction at 2Gy as a potential prognostic factor for the radiotherapy of carcinoma of the cervix. Int J Radiat Biol 56: 761–765

    Article  PubMed  CAS  Google Scholar 

  • West CML, Davidson SE, Hunter RD (1992) Surviving fraction at 2Gy versus control of human cervical carcinoma—update of the Manchester study. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research, a twentieth-centuary perspective. Academic, San Diego, pp 706–711

    Google Scholar 

  • Wetterer J (1913–1914) Handbuch der Röntgentherapie, 2nd edn, vol I. Otto Neminch, Leipzig

    Google Scholar 

  • Williams MV, Denkamp J, Fowler F (1984) Dose-response relationships for human tumors: implications for clinical trials of dose modifying agents. Int J Radiat Oncol Biol Phys 10: 1703–1707

    Article  PubMed  CAS  Google Scholar 

  • Withers HR (1975) The four R’s of radiotherapy. In: Lett JT, Alder H (eds) Advances in radiation biology, vol 5. Academic, New York, p 241

    Google Scholar 

  • Yang X, Darling JL, McMillan TJ, Peacock JH, Steel GG (1990) Radiosensitivity, recovery and dose-rate effect in three human glioma cell lines. Radiother Oncol 19: 49–56

    Article  PubMed  CAS  Google Scholar 

  • Zietman AL, Suit HD, Ramsay JR, Silobrcic V, Sedlaek RS (1988) Quantitative studies on the transplantability of murine and human tumors into brain and subcutaneous tissues of NCr/Sed nude mice. Cancer Res 48: 6510–6516

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumann, M., Taghian, A., Budach, W. (1993). Radiosensivity of Tumor Cells: The Predictive Value of SF2. In: Beck-Bornholdt, HP. (eds) Current Topics in Clinical Radiobiology of Tumors. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84918-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84918-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84920-6

  • Online ISBN: 978-3-642-84918-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics