Skip to main content

Lineage, Migration, and Phenotype in Avian Optic Tectum: Analysis with Recombinant Retroviral Vectors

  • Conference paper
Gene Transfer and Therapy in the Nervous System

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Summary

We have used retrovirus mediated gene transfer in two ways to analyze developmental processes in chicken optic tectum. First, viruses encoding the marker gene, lacZ, were employed as tracers to analyze the lineage and migration of tectal cells. These studies demonstrated that a multipotential progenitor gives rise to neurons, astrocytes, and radial glial cells, and revealed a striking relationship between the migratory path that a cell follows and the phenotype it acquires. Second, with the aim of assessing roles that specific genes play, we have begun to use retroviral vectors to coexpress lacZ and a potentially bioactive gene, or its antisense copy, in clones of cells. In initial studies, overexpression of an oncogene (v-src) and antisense suppression of an adhesion molecule (integrin β1) have perturbed the behavior of lacZ-positive cells in ways that provide insights into the functions of these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alvarez-Buylla A, Theelen M, Nottebohm F (1990) Proliferation “hot-spots” in adult avian ventricular zone reveal radial cell division. Neuron 5:101–109

    Article  PubMed  CAS  Google Scholar 

  • Arrigo S, Beemon K (1988) Regulation of Rous sarcome virus RNA splicing and stability. Mol Cell Biol 8:4858–4867

    PubMed  CAS  Google Scholar 

  • Bronner-Fraser M, Fraser S (1989) Developmental potential of avian trunk neural crest cells in situ. Neuron 3:755–766

    Article  PubMed  CAS  Google Scholar 

  • Bunge MB, Wood PM, Tynan LB, Bates ML, Sanes JR (1989) Perineurium originates from fibroblasts: demonstration with a retroviral marker. Science 243:229–231

    Article  PubMed  CAS  Google Scholar 

  • Colman A (1990) Antisense strategies in cell and developmental biology. J Cell Sci 97:399–409

    PubMed  CAS  Google Scholar 

  • Emmerman M, Temin HM (1986) Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 95:459–467

    Google Scholar 

  • Frank E, Sanes JR (1991) Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus. Development 111:895–908

    PubMed  CAS  Google Scholar 

  • Frederiksen K, McKay RDG (1988) Profileration and differentiation of rat neuroepithelial precursor cells in vivo. J Neurosci 8:1144–1151

    PubMed  CAS  Google Scholar 

  • Friedman T (1989) Progress toward human gene therapy. Science 244:-1275–1281

    Article  Google Scholar 

  • Galileo DS, Gray GE, Owens GC, Majors J, Sanes JR (1990) Neurons and glia arise from a common progenitor in chicken optic tectum: demonstration with two retroviruses and cell type-specific antibodies. Proc Natl Acad Sci USA 87:458–462

    Article  PubMed  CAS  Google Scholar 

  • Galileo DS, Majors J, Sanes JR (1991) Retrovirus-mediated introduction of antisense integrin β1 halts radial migration in chick optic tectum in vivo. Neurosci Abstr 17:923

    Google Scholar 

  • Ghattas IR, Sanes JR, Majors JE (1991) The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol Cell Biol, 11:5848–5859

    PubMed  CAS  Google Scholar 

  • Gray GE, Sanes JR (1991) Migratory paths and phenotypic choices of clonally related cells in the avian optic tectum. Neuron 6:211–225

    Article  PubMed  CAS  Google Scholar 

  • Gray GE, Sanes JR (1992) Lineage of radial glia in the chicken optic tectum. Development, 114:271–283

    PubMed  CAS  Google Scholar 

  • Gray GE, Glover JC, Majors J, Sanes JR (1988) Radial arrangement of clonally related cells in the chicken optic tectum: lineage analysis with a recombinant retrovirus. Proc Natl Acad Sci USA: 85:7356–7360

    Article  PubMed  CAS  Google Scholar 

  • Gray GE, Leber SM, Sanes JR (1990) Migratory patterns of clonally related cells in the developing central nervous system. Experientia 46:929–940

    Article  PubMed  CAS  Google Scholar 

  • Hatten ME (1990) Riding the glial monorail: a common mechanism for glialguided neuronal migration in different regions of the developing brain. Trends Neurosci 13:179–184

    Article  PubMed  CAS  Google Scholar 

  • Holt CE, Bertsch TW, Ellis HM, Harris WA (1988) Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1:15–26

    Article  PubMed  CAS  Google Scholar 

  • Jackson RJ, Howell MT, Kaminski A (1990) The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem sci 15:477–483

    Article  PubMed  Google Scholar 

  • Jassik-Gerschenfeld D, Hardy O (1984) The avian optic tectum: neurophysiology and behavioral correlations. In: Vanegas H (ed) Comparative anatomy of the optic tectum Plenum Press, New York, pp 649–686

    Google Scholar 

  • LaVail JH, Cowan WM (1971) The development of the chick optic tectum. II. Autoradiographic studies. Brain Res 28:421–441

    Article  PubMed  CAS  Google Scholar 

  • Leber SM, Breedlove SM, Sanes JR (1990) Lineage, arrangement and death of clonally related neurons in chick spinal cord. J Neurosci 10:2451–2462

    PubMed  CAS  Google Scholar 

  • Luskin MB, Pearlman AL, Sanes JR 1988) Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1:635–647

    Google Scholar 

  • Miller AD, Rosman GJ (1989) Improved retroviral vectors for gene transfer and expression. Bio Techniques 9:980–990

    Google Scholar 

  • Price J, Thurlow L (1988) Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development 104:473–482

    PubMed  CAS  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176

    Article  PubMed  CAS  Google Scholar 

  • Sanes JR (1989a) Extracellular matrix molecules that influence neural development. Ann Rev Neurosci 12:521–546

    Article  Google Scholar 

  • Sanes JR (1989b) Analyzing cell lineage with a recombinant retro virus. Trends Neurosci 12:21–28

    Article  PubMed  CAS  Google Scholar 

  • Sanes JR, Rubinstein JCR, Nicolas JF (1986) Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J 5:3133–3142

    PubMed  CAS  Google Scholar 

  • Stoltzfus CM, Fogarty SJ (1989) Multiple regions in the Rous sarcoma virus src gene intron act in cis to affect the accumulation of unspliced RNA. J Virol 63:1669–1676

    PubMed  CAS  Google Scholar 

  • Turner DL, Cepko CL (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature 328:131–136

    Article  PubMed  CAS  Google Scholar 

  • Turner DL, Snyder EY, Cepko L (1990) Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4:833–845

    Article  PubMed  CAS  Google Scholar 

  • Vanselow J, Thanos S, Godement P, Henke-Fahle S, Bonhoeffer F (1989) Spatial arrangement of radial glia and ingrowing retinal axons in the chick optic tectum during development. Dev Brain Res 45:15–27

    Article  CAS  Google Scholar 

  • Voigt T (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289:74–88

    Article  PubMed  CAS  Google Scholar 

  • Walsh C, Cepko CL (1988) Clonally related cortical cells show several migration patterns. Science 241:1342–1345

    Article  PubMed  CAS  Google Scholar 

  • Weiss R, Teich N, Varms H, Coffin J (1985) RNA tumor viruses. Gold Spring Harbor, Cold Spring Harbor Lab

    Google Scholar 

  • Wetts R, Fraser SE (1988) Multipotent precursors can give rise to all major cell types of the frog retina. Science 239:1142–1145

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sanes, J.R., Galileo, S., Ghattas, I.R., Gray, G.E., Majors, J.E. (1992). Lineage, Migration, and Phenotype in Avian Optic Tectum: Analysis with Recombinant Retroviral Vectors. In: Gage, F.H., Christen, Y. (eds) Gene Transfer and Therapy in the Nervous System. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84842-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84842-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84844-5

  • Online ISBN: 978-3-642-84842-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics