Skip to main content

Three-Dimensional Simulation of a Laser Surface Treatment Through Steady State Computation in the Heat Source’s Comoving Frame

  • Conference paper
Mechanical Effects of Welding

Abstract

Superficial laser treatments are currently used to generate hard metallurgical structures and compressive residual stresses on the surface of the component treated. This paper presents a three-dimensional numerical simulation of such a treatment, based on a computation of the thermal, metallurgical and mechanical steady state in the laser’s comoving frame. This simulation notably shows that very high tensile stresses are generated below the external compression zone; this result yields important consequences upon fatigue crack initiation and propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lunéville, E. Simulation et contrôle de la trempe superficielle par laser. Thèse de Doctorat de l’Université Paris VI, 1988.

    Google Scholar 

  2. SYSWELD User’s Manual, FRAMASOFT Report n SM/NT.88/1010 (I988).

    Google Scholar 

  3. Oddy, A.S., Goldak, J.A., and McDill, J.M.J. Numerical analysis of transformation plasticity in ZD finite element analysis of welds. Eur. J. Mech. A/Solids, 9, 253 (1990).

    Google Scholar 

  4. Nguyen, Q.S., and Rahimian, M. Mouvement permanent. d’une fissure en milieu élastoplastique. J. Méc. Appl., 5. 95 (1981).

    Google Scholar 

  5. Dang Van, K., Inglebert, G., and Proix, J.M. Sur un nouvel algorithme de calcul des structures élastoplastiques en régime stationnaire. Conference presented at the 3rd “Colloque sur les tendances actuelles en calcul des structures”, Bastia, France (1985)

    Google Scholar 

  6. Maitournam, H. Résolution numérique des problèmes élastoplastiques stationnaires. Thèse de Doctorat de l’ENPC, 1989.

    Google Scholar 

  7. Leblond, J.B., and Devaux, J. A new kinetic model for anisothermal metallurgical transformations in steels, including effect of austenite grain size. Acta Met., 32, 137 (1984).

    Article  Google Scholar 

  8. Leblond, J.B., Mottet, G., and Devaux, J. A theoretical and numerical approach to the plastic behaviour of steels during phase transformations - I: Derivation of general relations; II: Study of classical plasticity for ideal-plastic phases, J. Mech. Phys. Solids, 34, 395 (1986).

    Article  MATH  Google Scholar 

  9. Leblond, J.B., Devaux, J., and Devaux, J.C. Mathematical modelling of transformation plasticity in steels - I: Case of ideal-plastic phases; II: Coupling with strain hardening phenomena. Int. J. Plast., 5, 551 (1989).

    Article  Google Scholar 

  10. Hugues, T.J.R., and Brooks, A. A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure, in Finite Elements in Fluids, edited by Gallagher, Norrie, Oden and Zienkiewicz, Wiley, New York (1982).

    Google Scholar 

  11. Deperrois, A. Private communication (1991)·

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Bergheau, J.M., Pont, D., Leblond, J.B. (1992). Three-Dimensional Simulation of a Laser Surface Treatment Through Steady State Computation in the Heat Source’s Comoving Frame. In: Karlsson, L., Lindgren, LE., Jonsson, M. (eds) Mechanical Effects of Welding. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84731-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84731-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84733-2

  • Online ISBN: 978-3-642-84731-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics