Skip to main content

Part of the book series: NATO ASI Series ((ASII,volume 13))

Abstract

This chapter identifies and describes major industrial sources of methane (CH4) emissions. For each source type examined, CH4 release points are identified and a detailed discussion of the factors affecting emissions is provided. A summary and discussion of available global and country-specific CH4 emissions estimates are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ameri, S., F.T. Al-Sandoon, C.W. Byrer. 1981. Coalbed methane resource estimate of the Piceance Basin (Report No. DOE/METC/TPR/82–6). U.S. Department of Energy, Morgantown, West Virginia, 44 p.

    Google Scholar 

  • American Gas Association. 1986. Lost and unaccounted for gas. In: Issue Brief 1986–28. American Gas Association, Arlington, Virginia, 4 p.

    Google Scholar 

  • Anderson, R.B., L.J.E. Hofer. 1965. Activation energy of diffusion of gases into porous solids. Fuel, 44: 303.

    Google Scholar 

  • Andronova, G.A., I.L. Karol. 1993. The contribution of USSR sources to global methane emission. Chemosphere, 26 (1–4): 111–126.

    Article  CAS  Google Scholar 

  • Basic, A., M. Vukic. 1989. Dependence of methane contents in brown coal and lignite seams on depth of occurrence and natural conditions. In: Proceedings of the 23rd International Conference of Safety in Mines Research Institutes. U.S. Department of the Interior, Bureau of Mines, Washington, D.C.

    Google Scholar 

  • Berdowski, J.J.M., J.G.J. Olivier, C. Veldt. 1993. Methane emissions from fuel combustion and industrial processes. In: Proceedings of the International Workshop on Methane and Nitrous Oxide: Methods in National Inventories and Options for Control, February 1993, Amersfoort, The Netherlands.

    Google Scholar 

  • Blake, D.R. 1984. Increasing Concentrations of Atmospheric Methane, 1979–1983 ( Ph.D. Dissertation). University of California, Irvine, California.

    Google Scholar 

  • Bolle, H.J., W. Seiler, B. Bolin. 1986. Other greenhouse gases and aerosols. In: The Greenhouse Effect, Climatic Change, and Ecosystems ( B. Bolin, ed.), John Wiley and Sons, New York, 157–203.

    Google Scholar 

  • Boyer, C.M., J.R. Kelafant, V.A. Kuuskraa, K.C. Manger, D. Kruger. 1990. Methane emissions from coal mining: issues and opportunities for reduction (EPA Report No. EPA-400/9–90/008). U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, D.C.

    Google Scholar 

  • Chem Systems International, Ltd. 1989. Methane Losses from Natural Gas Utilization, prepared by Chem Systems International, Ltd., for the National Energy Admin., Sweden, 42 p.

    Google Scholar 

  • Cicerone, R.J., R. Oremland. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles, 2: 299–327.

    Article  CAS  Google Scholar 

  • Cottengham, T.L., R.M. Cowgill, J.B. Godkin, J.R. Grinstead, D.J. Luttrell, F.A. Nelson, R.H. Noistering, J.D. Peterson, R. Quintanilla, J.L. Robertson, E.R. Walden, R.L. Waller, R.E. Wlasenko, R.M. Wong. 1989. Unaccounted-for Gas Project, Pacific Gas and Electric Company, San Francisco, California.

    Google Scholar 

  • Creedy, D.P. 1993. Methane emissions from coal-related sources in Britain: Development of a methodology. Chemosphere, 26 (1–4): 419–440.

    Article  CAS  Google Scholar 

  • Crutzen, P.J. 1987. Role of the tropics in atmospheric chemistry. In: Geophysiology of Amazonia ( R. Dickinson, ed.), John Wiley and Sons, New York.

    Google Scholar 

  • Darmstadter, J., L. Ayres, R.U. Ayres, W.C. Clark, P. Crosson, P. Crutzen, T.E. Graedel, R. McGill, R.F. Richards, J.A. Tarr. 1984. Impacts of world development on selected characteristics of the atmosphere: an integrative approach, volume 2-appendices (Report No.ORNL/Sub/86–22033/1/V2). Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Department of Energy. 1991. National energy strategy (Report No. DOEIS0082P). U.S. Department of Energy, Washington, D.C., 217 p.

    Google Scholar 

  • Jolly, D.C., L.H. Morris, F.B. Hinsely. 1968. An investigation into the relationship between the methane sorption capacity of coal and gas pressure. The Mining Engineer 127: 539.

    Google Scholar 

  • Ehhalt, D.H. 1974. The atmospheric cycle of methane. Telles, 26: 58–70.

    Article  CAS  Google Scholar 

  • Ehhalt, D.H., U. Schmidt. 1978. Sources and sinks of atmospheric methane. Pageoph, 116:452–463.

    Google Scholar 

  • Environment Agency of Japan. 1990. International workshop on methane emissions from natural gas systems, coal mining, and waste management systems. Environment Agency of Japan, U.S. Agency for International Development, and U.S. Environmental Protection Agency, Washington, D.C., 709 p.

    Google Scholar 

  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele, P.J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96:13, 033–13, 065.

    CAS  Google Scholar 

  • Hay, N.E., P.L. Wilkinson, W.M. James. 1988. Global climate change and emerging energy technologies for electric utilities: the role of natural gas. American Gas Association, Arlington, Virginia, 30 p.

    Google Scholar 

  • Hitchcock, D.R., A.E. Wechsler. 1972. Biological cycling of atmospheric trace gases (Report No. NASW-2128). National Aeronautic and Space Administration, Washington, D.C., 415 p.

    Google Scholar 

  • Irani, M.C., E.D. Thimons, T.G. Bobick. 1972. Methane emission from U.S. coal mines, a survey (Report No. IC 8558). U.S. Department of the Interior, Bureau of Mines, Pittsburgh, Pennsylvania.

    Google Scholar 

  • JEA-EPA. 1990. Methane emissions and opportunities for control: workshop results of intergovernmental panel on climate change response strategies working group. Japan Environment Agency/United States Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Jolly, D.C., L.H. Morris, F.B. Hinsely. 1968. An investigation into the relationship between the methane sorption capacity of coal and gas pressure. The Mining Engineer 127: 539.

    Google Scholar 

  • Joubert, J.I., C.T. Grein, B. Bienstock. 1974. Effect of moisture on the methane capacity of American coals. Fuel, 53: 186.

    Article  CAS  Google Scholar 

  • Keeling, C.D. 1973. Industrial production of carbon dioxide from fossil fuels and limestone. Tellus, 25: 174–198.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., M.J. Shearer, Eds. 1993. Chemosphere, 26 (1–4).

    Google Scholar 

  • Kim, A.G. 1977. Estimating methane content of bituminous coalbeds from adsorption data (Report No. RI 8245). U.S. Department of the Interior, Bureau of Mines, Pittsburgh, Pennsylvania.

    Google Scholar 

  • Kirchgessner, D.A., S.D. Piccot, J.D. Winkler. 1993a. Estimate of global methane emissions from coal mines Chemosphere, 26 (1–4): 453–472.

    Article  CAS  Google Scholar 

  • Kirchgessner, D.A., S.D. Piccot, A. Chadha, T Minnich. 1993b. Estimation of methane emissions from a surface coal mine using open-path FTIR spectroscopy and modeling techniques. Chemosphere, 26 (1–4): 23–44.

    Article  CAS  Google Scholar 

  • Kissel, F.N., C.M. McCulloch, C.H. Elder. 1973. The direct method of determining methane content of coalbeds for ventilation design (Report No. RI 7767 ). U.S. Department of the Interior, Bureau of Mines, Pittsburgh, Pennsylvania.

    Google Scholar 

  • Koyama, T 1963. Gaseous metabolism in lake sediments and paddy soils and the production of atmospheric methane and hydrogen. J. Geophys. Res., 68:3, 971–3, 973.

    CAS  Google Scholar 

  • Lacroix, A.V. 1993. Unaccounted-for sources of fossil fuel and isotopically-enriched methane and their contribution to the emissions inventory: A review and synthesis. Chemosphere, 26 (1–4): 507–558.

    Article  CAS  Google Scholar 

  • Lambert, S.W., M.A. Trevits, P.F. Steidl. 1980. Vertical borehole design and completion practices to remove methane gas from minable coalbeds (Report No. DOE/CMTC/TR-80/2). U.S. Department of Energy, Washington, D.C., 163 p.

    Google Scholar 

  • Murray, D.D. 1980. Methane from coalbeds - A significant undeveloped source of natural gas. Colorado School of Mines Research Institute, Golden, Colorado, 37 p.

    Google Scholar 

  • Okken, P.A., T Kram. 1989. CH4/CO2-emission from fossil fuels global warming potential. In: Proceedings of the International Energy Agency Workshop on Greenhouse Gases, June 1989, Paris.

    Google Scholar 

  • Piccot, S.D., M. Saeger. 1990. National–and state–level emissions estimates of radiatively important trace gases (RITG) from anthropogenic sources (Report No. EPA–600/8–90–073; NTIS PB91–103572). U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

    Google Scholar 

  • Piccot, S.D., L. Beck. 1993. Estimation of methane emissions from minor anthropogenic sources. In: Proceedings of the International Workshop on Methane and Nitrous Oxide: Methods in National Inventories and Options for Control, February 1993, Amersfoort, The Netherlands.

    Google Scholar 

  • Piccot, S.D., A. Chadha, J. DeWaters, T Lynch, P. Marsosudiro, W. Tax, S. Walata, J. D. Winkler. 1990. Evaluation of significant anthropogenic sources of radiatively important trace gases (Report No. EPA–600/8–90–079; NTIS PB91–127753). U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

    Google Scholar 

  • Piccot, S.D., A. Chadha, D.A. rchgessner, R. Kagenn, M.J. Czerniawski, T. Minnich 1991. Measurement of methane emissions in the plume of a large surface coal mine using open-path FlIR spectroscopy. In: Proceedings of 84th Annual Meeting of the Air and Waste Management Association, June 1991, Vancouver, British Columbia, Canada.

    Google Scholar 

  • Pilcher, R.C., C. Bibler, R. Glickert, L. Machesky, J. Williams 1991. Assessment of the potential for economic development and utilization of coalbed methane in Poland (Report No. EPA–400/1–91–032). U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, D.C.

    Google Scholar 

  • Schwarzer, R.R., C.W. Byrer. 1983. Variation in the quantity of methane adsorbed by selected coals as a function of coal petrology and coal chemistry (Report No. DE AC21–80MC14219). U.S. Department of Energy, Morgantown, West Virginia.

    Google Scholar 

  • Seiler, W. 1984. Contribution of biological processes to the global budget of CH4 in the atmosphere. In: Current Perspectives in Microbial Ecology ( M.J. Klug and C.A. Reddy, eds.), American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Sheppard, J.C., H. Westberg, J.F. Hopper, K. Ganesan. 1982. Inventory of global methane sources and their production rates. J. Geophys. Res., 87: 1305–1312.

    Article  CAS  Google Scholar 

  • Tilkicioglu, B.H., and D.R. Winters. 1989. Annual Methane Emission Estimate of the Natural Gas and Petroleum Systems in the United States,draft report prepared for the U.S. Environmental Protection Agency Office of Air and Radiation by Pipeline Systems Incorporated, Walnut Creek, CA, 101 pages.

    Google Scholar 

  • Watt Committee on Energy. 1991. Quantification of methane emissions from British coal mine sources (Draft Report).

    Google Scholar 

  • Whalen, M., N. Tanaka, R. Henry, B. Deck, J. Zeglen, J.S. Vogel, J. Southon, A. Shemesh, R. Fairbanks, W Broecker. 1989. Carbon-14 in methane sources and in atmospheric methane: the contribution from fossil carbon. Science, 245:286–290.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beck, L.L., Piccot, S.D., Kirchgessner, D.A. (1993). Industrial Sources. In: Khalil, M.A.K. (eds) Atmospheric Methane: Sources, Sinks, and Role in Global Change. NATO ASI Series, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84605-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84605-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84607-6

  • Online ISBN: 978-3-642-84605-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics