Skip to main content

Molecular Systematics at the Species Boundary: Exploiting Conserved and Variable Regions of the Mitochondrial Genome of Animals via Direct Sequencing from Amplified DNA

  • Chapter
Molecular Techniques in Taxonomy

Part of the book series: NATO ASI Series ((ASIH,volume 57))

Abstract

Traditional morphological characters have provided a wealth of systematic information. This information has been used to establish phylogenetic relationships which we refine today using a wide variety of techniques. A common result of traditional morphological analyses has been identification of groups of related taxa. Relationships within and/or among these groups were often uncertain (e.g. orders of flowering plants, Heywood 1978; species groups of kangaroo rats, Hall 1981). Very closely related species were particularly difficult to connect phylogenetically using morphological characters (e.g. Hawaiian Drosophila Hardy 1965; cichlid fishes, Fryer and Isles 1972). The addition of detailed morphometric analyses in the 1970’s and 1980’s increased our ability to identify taxa and discriminate among them but did not prove useful for deciphering relationships among taxa (Rohlf and Bookstein 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson S, De Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156: 683–717

    PubMed  CAS  Google Scholar 

  • Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genet 103: 287–312

    CAS  Google Scholar 

  • Aquadro CF, Kaplan N, Risko KJ (1984) An analysis of the dynamics of mammalian mitochondrial dna sequence evolution. Mol Biol Evol 1: 423–434

    PubMed  CAS  Google Scholar 

  • Archie J (1989a) A randomization test for phylogenetic information in systematic data. Syst Zool 38: 239–252

    Google Scholar 

  • Archie J (1989b) Homoplasy excess ratios: New indices for measuring levels of homoplasy in phylogenetic systematics and a critique of the consistency index. Systematic Zoology 38: 253–269

    Google Scholar 

  • Archie J (1990) Homoplasy excess statistics and retention indices: A reply to Farris. Systematic Zoology 39: 169–174

    Google Scholar 

  • Archie J (1991) Tests to distinguish between phylogenetic information and random noise in nucleotide sequence data. In: Dudley E (ed) Proceed IV Intnl Congress Syst Evol Biol, Dioscorides Press, in press.

    Google Scholar 

  • Archie JW, Simon C, Martin A (1989) Small sample size does decrease the stability of dendrograms calculated from allozyme-frequency data. Evolution 43: 678–683

    Google Scholar 

  • Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4: 289–333

    PubMed  CAS  Google Scholar 

  • Aubert J, Solignac M (1990) Experimental evidence for mitochondrial DNA introgression between Drosophila species. Evolution, in press

    Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: The mitochondrial bridge between population genetics and systematics. Annu Rev Ecol Syst 18: 489–522

    Google Scholar 

  • Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Evol 24: 1–11

    PubMed  CAS  Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167–180

    PubMed  CAS  Google Scholar 

  • Bishop MJ, Friday AE (1987) Tetrapod relationships: the molecular evidence In: Patterson C (ed) Molecules and morphology in evolution: conflict or compromise? Cambridge University Press

    Google Scholar 

  • Boyce TM, Zwick ME, Aquadro CF (1989) Mitochondrial DNA in the bark weevils: Size, structure and heteroplasmy. Genetics 123: 825–836

    PubMed  CAS  Google Scholar 

  • Brown WM (1985) The Mitochondrial Genome of Animals. In: Maclntyre RJ (ed), Molecular Evolutionary Genetics, Plenum, NY, p 95

    Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci 76: 1967–1971

    PubMed  CAS  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18: 225–239

    PubMed  CAS  Google Scholar 

  • Buth DG (1984) The application of electrophoretic data in systematic studies. Annu Rev Ecol Syst 15: 501–522

    Google Scholar 

  • Cann RL, Wilson AC (1983) Length mutations in human mitochondrial DNA. Genetics 104: 699–711

    PubMed  CAS  Google Scholar 

  • Cann RL, Brown WM, Wilson AC (1984) Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106: 479–499

    PubMed  CAS  Google Scholar 

  • Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325: 31–36

    PubMed  CAS  Google Scholar 

  • Carr SM, Brothers AJ, Wilson AC (1987) Evolutionary inferences from restriction maps of mitochodrial DNA from nine taxa of Xenopus frogs. Evolution 41: 176–188

    CAS  Google Scholar 

  • Carson HL, Hardy DE, Spieth HT, Stone WS (1970) The evolutionary biology of Hawaiian Drosophilidae. In: Hecht MK, Steere WC (eds) Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky AppletonCentury-Crofts, New York, p 437

    Google Scholar 

  • Cantatore P, Roberti M, Rainaldi G, Gadaleta MN, Saccone C (1989) The complete nucleotide sequence, gene organization, and genetic code of the mitochondrial genome of Paracentrotus lividus. J Biol Chem 264: 10965–75

    PubMed  CAS  Google Scholar 

  • Cavender JA (1978) Taxonomy with confidence. Math Biosc 40: 271–280

    Google Scholar 

  • Cheeseman P, Kanefsky B (1990) Evolutionary tree reconstruction. In: AAAI String Symposium, Minimum Message Length and Coding. Stanford Univ Press

    Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila vakuba: Nucleotide sequence, gene organization, and genetic code. J Mol Evol 22: 252–271

    PubMed  CAS  Google Scholar 

  • Clary DO, Wolstenholme DR (1987) Drosophila mitochondrial DNA: conserved sequence in the A+T rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J Mol Evol 25: 116–125

    Google Scholar 

  • Coyne J (1982) Gel electrophoresis and cryptic protein variation. In: Rattazzi M, Scandalios J, Whitt G (eds) Isozymes: Current Topics in Biological and Medical Research, vol 6. Alan R Liss, New York, p 1

    Google Scholar 

  • Crews S, Ojala D, Posakony J, Nishiguchi J, Attardi G (1978) Nucleotide sequence of a region of human mitochondrial DNA containing the precisely identified origin of replication. Nature 277: 192–198

    Google Scholar 

  • Crozier RH, Crozier YC, Mackinlay AG (1989) The CO-I and CO-II region of honeybee mitochondrial DNA: Evidence for variation in insect mitochondrial evolutionary rates. Mol Biol Evol 6: 399–411

    PubMed  CAS  Google Scholar 

  • Dams E, Hendriks L, Van de Peer Y, Neefs J-M, Smits G, Vandenbempt I, De Wachter R (1988) Compilation of small ribosomal subunit RNA sequences. Nucl Acids Res 16 supl: r87 - r173

    Google Scholar 

  • de Bruijn MHL (1983) Drosophila melanogaster mitochondrial DNA, a novel organization and genetic code. Nature 304:234–241

    Google Scholar 

  • Debry RW, Slade NA (1985) Cladistic analysis of restriction endonuclease cleavage maps within a maximum-likelihood framework. Syst Zool 34: 21–34

    Google Scholar 

  • Derancourt J, Lebor AS, Zukerkandl E (1967) Sequence des nucleotides et evolution. Bull Soc Chim Biol 49: 577–603

    PubMed  CAS  Google Scholar 

  • Desalle R, Freedman T, Prager EM, Wilson AC (1987) Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. Proc Natl Acad Sci USA 83: 6902–6906

    Google Scholar 

  • Desalle R, Giddings LV, Templeton AR (1986a) Mitochondrial DNA variability in natural populations of Hawaiian Drosophila. I. Methods and levels of variability in D. silvestris and D. heteroneura populations. Heredity 56: 75–85

    PubMed  Google Scholar 

  • Desalle R, Giddings LV, Kaneshiro KY (1986b) Mitochondrial DNA variation in natural populations of Hawaiian Drosophila. II. Genetic and phylogenetic relationship of natural populations of D. silvestris and D. heteroneura. Heredity 56: 87–96

    Google Scholar 

  • Desalle R, Templeton A (1988) Founder effects and the rate of mitochondrial DNA evolution in Hawaiian Drosophila. Evol 42: 1076–1084

    Google Scholar 

  • Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome. J Mol Biol 212: 599–634

    PubMed  CAS  Google Scholar 

  • Engels WR (1981) Estimating genetic divergence and genetic variability with restriction endonucleases. Proc Natl Acad Sci USA 78: 6329–6333

    PubMed  CAS  Google Scholar 

  • Erlich HA, Bugawan TL (1990) HLA DNA typing. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, p 261

    Google Scholar 

  • Faith DP (1990) Chance marsupial relationships? Nature 345: 393–394

    Google Scholar 

  • Faith DP, Cranston PS (1991) Could a cladogram this short have arisen by chance alone?: an index of cladistic character covariation. Cladistics, in press

    Google Scholar 

  • Farris JS (1969) A successive approximations approach to character weighting. Syst Zool 18: 374–385

    Google Scholar 

  • Farris JS (1988) Hennig-86. A computer program for phylogenetic analysis available from the author. 41 Admiral Street, Port Jefferson Station, New York 11776

    Google Scholar 

  • Farris JS (1989) The retention index and the resealed consistency index. Cladistics 5: 417–419

    Google Scholar 

  • Farris JS (1990) The retention index and homoplasy excess. Systematic Zoology 38:406–407

    Google Scholar 

  • Fauron CMR, Wolstenholme DR (1980) Intraspecific diversity of nucleotide sequences within the adenine + thymine-rich region of mitochondrial DNA molecules of Drosophila mauritiana, Drosophila melanogaster and Drosophila simulans. Nucleic Acids Res 8:5391–5410

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Ann Rev Genet 22: 521–565

    PubMed  CAS  Google Scholar 

  • Feng D-F, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25: 351–360

    PubMed  CAS  Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT et al (1988) Molecular phylogeny of the animal kingdom. Science 239: 748–752

    PubMed  CAS  Google Scholar 

  • Fitch WM, Beintema JJ (1990) Correcting parsimonious trees for unseen nucleotide substitutions: the effect of dense branching as exemplified by ribonuclease. Mol Biol Evol 7: 438–443

    PubMed  CAS  Google Scholar 

  • Fitch WM (1986) The estimate of total nucleotide substitutions from pairwise differences is biased. Phil Trans Roy Soc (Lond) B, 316: 317–324

    Google Scholar 

  • Fitch WM, Bruschi M (1987) The evolution of prokaryotic ferredoxins-with a general method correcting for unobserved substitutions in less branched lineages. Mol Biol Evol 4: 381–394

    PubMed  CAS  Google Scholar 

  • Fitch WM, Markowitz (1970) An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem, Genet 4: 579–593

    CAS  Google Scholar 

  • Fryer G, Isles TD (1972) The Cichlid Fishes of the Great Lakes of Africa: Their Biology and Evolution. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Gadaleta G, Pepe G, DeCandia G, Quagliariello C, Sbisa E, Saccone C (1989) The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28: 497–516

    PubMed  CAS  Google Scholar 

  • Caresse R (1988) Drosophila melanogaster mitochondrial DNA: Gene organization and evolutionary considerations. Genetics 118:649–663

    Google Scholar 

  • Goodman M (1981) Decoding the pattern of protein evolution. Prog Biophys Mol Biol 37: 105–164

    Google Scholar 

  • Goodman M, Moore GW, Barnabas J, Matsuda G (1974) The phylogeny of human globin genes investigated by the maximum parsimony method. J Mol Evol 3: 1–48

    PubMed  CAS  Google Scholar 

  • Gray MW (1989) Origin and evolution of mitochondrial DNA. Annu Rev Cell Biol 5: 25–50

    PubMed  CAS  Google Scholar 

  • Hall ER (1981) The mammals of North America, ed 2. John Wiley and Sons, New York, p 573

    Google Scholar 

  • Hardy DE (1965) Diptera: Cyclorrapha II, Series Schizophora, Section Acalypterae I, Family Drosophilidae. Insects of Hawaii, Vol 12. University of Hawaii Press, Honolulu

    Google Scholar 

  • Harrison R (1989) Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol 4: 6–11

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Kishino H (1989) Heterogeneity of tempo and mode of mitochondrial DNA evolution among mammalian orders. Jpn J Genet 64: 243–258

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 26: 132–147

    Google Scholar 

  • Hasegawa M, Kishino H, Hayasaka K, Horai S (1990) Mitochondrial DNA evolution in primates: transition rate has been extremely low in the lemur. J Mol Evol 31: 113–121

    PubMed  CAS  Google Scholar 

  • Haucke H-R, Gellissen G (1988) Different mitochondrial gene orders among insects: exchanged tRNA gene positions in the COII/COIII region between an orthopteran and a dipteran species. Curr Genet 14: 471–476

    PubMed  CAS  Google Scholar 

  • HsuChen C-C, Kotin RM, Dubin DT (1984) Sequences of the coding and flanking regions of the large ribosomal subunit RNA gene of mosquito mitochondria. Nucl Acids Res 12: 7771–7785

    PubMed  CAS  Google Scholar 

  • Hayasaka K, Gojobori T, Horai S (1988) Molecular phylogeny and evolution of primate mitochondrial DNA. Mol Biol Evol 5: 626–644

    PubMed  CAS  Google Scholar 

  • Hendy MD (1989) The relationship between simple evolutionary tree models and observable sequence data. Syst Zool 38: 310–321

    Google Scholar 

  • Hendy MD, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Zool 38: 297–309

    Google Scholar 

  • Hein J (1989a) A new method that simultaneously aligns and reconstructs ancestral sequences for any number of homologous sequences, when the phylogeny is given. Mol Biol Evol 6: 649–668

    PubMed  CAS  Google Scholar 

  • Hein J (1989b) A tree reconstruction method that is economical in the number of pairwise comparisons used. Mol Biol Evol 6: 669–684

    PubMed  CAS  Google Scholar 

  • Heywood VH (1978) Flowering Plants of the World. Mayflower Books Inc., New York

    Google Scholar 

  • Hillis DM, Davis SK (1986) Evolution of ribosomal DNA: Fifty million years of recorded history in the frog genus Rana. Evolution 40: 1275–1288

    CAS  Google Scholar 

  • Hixson JE, Brown WM (1986) A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution, and phylogenetic implications. Mol Biol Evol 3: 1–18

    PubMed  CAS  Google Scholar 

  • Hogeweg P, Hesper B (1984) The alignment of sets of sequences and the construction of phyletic trees: an integrated method. J Mol Evol 20: 175–186

    PubMed  CAS  Google Scholar 

  • Holmquist R (1983) Transitions and transversions in evolutionary descent: an approach to understanding. J Mol Evol 19: 134–144

    PubMed  CAS  Google Scholar 

  • HsuChen C-C, Kotin RM, Dubin DT (1984) Sequences of the coding and flanking regions of the large ribosomal subunit RNA gene of mosquito mitochondria. Nucl Acids Res 12: 7771–7785

    PubMed  CAS  Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1990) Evolution of the cytochrome b gene of mammals. J Mol Evol in press

    Google Scholar 

  • Jacobs HT, Elliott DJ, Math VB, Farquharson A (1988) Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol 202: 185–217

    PubMed  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. pp 21–120 in HW Munro, ed Mammalian protein metabolism. Academic Press, New York

    Google Scholar 

  • Kaplan N, Risko K (1981) An improved method for estimating sequence divergence of DNA using restriction endonuclease mappings. J Mol Evol 17: 156–162

    PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120

    PubMed  CAS  Google Scholar 

  • Kishino H, Hasegawa M (1990) Converting distance to time: an application to human evolution. Methods Enzymol 183: 550–570

    PubMed  CAS  Google Scholar 

  • Kluge AG, Farris JS (1969) Quantitative Phyletics and the Evolution of Anurans. Syst Zool 18: 1–32

    Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc Natnl Acad Sci USA 86: 6196–6200

    CAS  Google Scholar 

  • Kogan SC, Gitschier J (1990) Genetic prediction of Hemophilia A. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, p 288

    Google Scholar 

  • Kreitman M, Aguade M (1986) Genetic uniformity in two populations of Drosophila melanogaster as revealed by filter hybridization of four nucleotide-recognizing restriction enzyme digests. Proc Natl Acad Sci USA 83: 3562–3566

    PubMed  CAS  Google Scholar 

  • Langley CH, Fitch WM (1974) An examination of the constancy of the rate of molecular evolution. J Mol Evol 3: 161–177

    PubMed  CAS  Google Scholar 

  • Lansman RA, Shade RO, Shapira JF, Avise JC (1981) The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. techniques and potential applications. J Mol Evol 17: 214–226

    PubMed  CAS  Google Scholar 

  • Lewontin RC (1989) Inferring the number of evolutionary events from DNA coding sequence differences. Mol Biol Evol 6: 15–32

    PubMed  CAS  Google Scholar 

  • Li W-H (1987) Models of nearly neutral mutations with particular implica- tions for nonrandom usage of synonymous codons. J Mol Evol 24: 337–345

    PubMed  CAS  Google Scholar 

  • Li W-H, Wu C-I, Luo C-C (1984) Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudo genes and its evolutionary implications. J Mol Evol 21: 58–71

    PubMed  CAS  Google Scholar 

  • Li W-H, Wu C-I, Luo C-C (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitutions considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2: 150–174

    PubMed  Google Scholar 

  • Li W-H, Tanimura M, Sharp PM (1987) An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25: 330–342

    PubMed  CAS  Google Scholar 

  • Maddison WP, Maddison DR (1990) MacClade. A program for the analysis of character evolution and the testing of phylogenetic hypotheses. Distributed by Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Manske CL, Chapman DJ (1987) Nonuniformity of nucleotide substitution rates in molecular evolution: Computer simulation and analysis of 5S ribosomal RNA sequences. J Mol Evol 26: 226–251

    PubMed  CAS  Google Scholar 

  • Martin AP, Kessing BD, Palumbi SR (1990) Accuracy of estimating genetic distance between species from short sequences of mitochondrial DNA. Mol Biol Evol 7: 485–488

    PubMed  CAS  Google Scholar 

  • Martin A, Simon C (1988) Anomalous distribution of nuclear and mitochondrial DNA markers in periodical cicadas resulting from life cycle plasticity. Nature (London) 336: 247–249

    Google Scholar 

  • Martin A, Simon C (1990) Differing levels of among-population divergence in the mitochondrial DNA of 13- versus 17-year periodical cicadas related to historical biogeography. Evolution 44: 1066–1080

    Google Scholar 

  • Maxson LR, Highton R, Wake DB (1979) Albumin evolution and its phylogenetic implications in the plethodontid salamander genera Plethadon and Ensatina. Copeia 1979: 502–508

    Google Scholar 

  • Miyamoto MM, Tanhauser SM, Laipis PJ (1989) Systematic relationships in the artiodactyl tribe Bovini (family Bovidae), as determined from mitochondrial DNA sequences. Syst Zool 38: 342–349

    Google Scholar 

  • Miyata T, Hayashida H, Kikuno R, Hasegawa M, Kobayashi M, Koike K (1982) Molecular clock of silent substitutions: At least six fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. J Mol Evol 19: 28–35

    PubMed  CAS  Google Scholar 

  • Miller JK, Barnes WM (1986) Colony probing as an alternative to standard sequencing as a means of direct analysis of chromosomal DNA to determine the spectrum of single-base changes in regions of known sequence. Proc Natl Acad Sci USA 83: 1026–1030

    PubMed  CAS  Google Scholar 

  • Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Ann Rev Ecol Syst 18: 269–92

    Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symposium on Quantitative Biology 51: 263–273

    CAS  Google Scholar 

  • Muto A, Osawa S (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84: 166–169

    PubMed  CAS  Google Scholar 

  • Nanney DL, Preparata RM, Preparata FP, Meyer EB, Simon EM (1989) Shifting ditypic site analysis: Heuristics for expanding the phylogenetic range of nucleotide sequences in Sankoff analysis. J Mol Evol 28: 451–459

    PubMed  CAS  Google Scholar 

  • Neefs J-M, Van de Peer Y, Hendriks L, and DeWachter R (1990) Compilation of small ribosomal subunit RNA sequences. Nucl Acids Res 18 supplement: 2237–2318

    PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia Univ Press, NY

    Google Scholar 

  • Nei M, Gojobori T (1987) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 418–426

    Google Scholar 

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 5269–5273

    PubMed  CAS  Google Scholar 

  • Nei M, Tajima F (1987) Problems arising in phylogenetic inference from restriction-site data. Mol Biol Evol 4: 320–323

    Google Scholar 

  • Neigel JE, Avise JC (1986) Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Karlin S, Nevo E (eds) Evolutionary Processes and Theory. Academic Press, p 515

    Google Scholar 

  • Nicoghosian K, Bigras M, Sankoff D, Cedergren R (1987) Archetypical features in tRNA families. J Mol Evol 26: 341–346

    PubMed  CAS  Google Scholar 

  • Noller HF, Woese CR (1981) Secondary structure of 16S ribosomal RNA. Science 212: 403–411

    PubMed  CAS  Google Scholar 

  • Olsen GJ (1988) Phylogenetic analysis using ribosomal RNA. Methods Enzymology 164: 793–812

    CAS  Google Scholar 

  • Oste C (1988) Polymerase chain reaction. Biotechniques 6: 162–166

    PubMed  CAS  Google Scholar 

  • Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR (1988) Chloroplast variation and plant phylogeny. Ann Mo Bot Gard 75: 1180–1206

    Google Scholar 

  • Palumbi S (1989) Rates of molecular evolution and the fraction of nucleotide positions free to vary. J Mol Evol 29: 180–188

    PubMed  CAS  Google Scholar 

  • Penny D (1982) Toward a basis for classification: the incompleteness of distance measures: incompatibility analysis and phenetic classification. J Theoret Biol 96: 129–142

    CAS  Google Scholar 

  • Powell MA, Crawford DL, Lauerman T, Powers DA. Analysis of cryptic alleles of Fundulus heteroclitus lactate dehydrogenase by a novel allele specific polymerase chain reaction. Submitted to Mol Biol Evol

    Google Scholar 

  • Powell JR, Caccone A, Amato GD, Yoon C (1986) Rates of nucleotide substitution in Drosophila mitochondrial DNA and nuclear DNA are similar. Proc Natl Acad Sci USA 83: 9090–9093

    PubMed  CAS  Google Scholar 

  • Rand DM, Harrison RG (1989) Molecular population genetics of mitochondrial DNA size variation in crickets. Genetics 121: 551–569

    PubMed  CAS  Google Scholar 

  • Roe BA, Ma DP, Wilson RK, Wong JFH (1985) The complete nucleotide sequence of the Xenopus laevis mitochondrial genome J Biol Chem 260 (17): 9759–74

    CAS  Google Scholar 

  • Rohlf FJ Bookstein FL (1990) Introductions to methods for landmark data. In: Rohlf FJ, Bookstein FL (eds) Proceedings of the Michigan Morphometrics Workshop. Museum of Zoology, University of Michigan Press, Ann Arbor, p 220

    Google Scholar 

  • Saccone C, Pesole G, Preparata G (1989) DNA microenvironments and the molecular clock. J Mol Evol 29: 407–411

    PubMed  CAS  Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of B-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354

    PubMed  CAS  Google Scholar 

  • Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986) Analysis of enzymatically amplified B-globin and HLA-DQ DNA with allele-specific oligonucleotide probes. Nature 324: 163–166

    PubMed  CAS  Google Scholar 

  • Sankoff DD, Cedergren RJ (1983) Simultaneous comparison of three or more sequences related by a tree. In: Sankoff D, Kruskal B (eds) Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, MA, p 253

    Google Scholar 

  • Satta Y, Ishiwa I, Chigusa SI (1987) Analysis of nucleotide substitutions of mitochondrial DNAs in Drosophila melanogaster and its sibling species. Mol Biol Evol 4: 638–650

    PubMed  CAS  Google Scholar 

  • Sharp P, Li W-H (1989) On the rate of DNA sequence evolution in Drosophila. J Mol Evol 28: 398–402

    CAS  Google Scholar 

  • Simon C (1988) Evolution of 13- and 17-year Periodical Cicadas (Homoptera: Cicadidae: Magicicada). Bull Entomol Soc Amer 34: 163–176

    Google Scholar 

  • Simon C, Paabo S, Kocher T, Wilson AC (1990) Evolution of the mitochondrial ribosomal RNA in insects as shown by the polymerase chain reaction. In: Clegg M, O’Brien S (eds), Molecular Evolution. UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 122, Alan R. Liss, Inc., NY, p 235

    Google Scholar 

  • Simon C, Franke A, Martin A (1991) The Polymerase chain reaction: DNA extraction and amplification. In: Hewitt GM (ed), Molecular Taxonomy, NATO Advanced Studies Institute, Springer Verlag, Berlin

    Google Scholar 

  • Solignac M, Monnerot M, Mounolou J-C (1986a) Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. J Mol Evol 23: 31–40

    PubMed  CAS  Google Scholar 

  • Solignac M, Monnerot M, Mounolou J-C (1986b) Concerted evolution of sequence repeats in Drosophila mitochondrial DNA. J Mol Evol 24: 53–60

    CAS  Google Scholar 

  • Swofford DL (1990) PAUP: Phylogenetic Analysis Using Parsimony, Version 3. 0. Illinois Natl Hist Surv, Champaign, IL

    Google Scholar 

  • Swofford DL, Berlocher SH (1987) Inferring evolutionary trees from gene frequency data under the principle of maximum parsimony. Syst Zool 36: 293–325

    Google Scholar 

  • Swofford DL, Maddison WP (1987) Reconstructing ancestral character states under Wagner parsimony. Math Biosci 87: 199–229

    Google Scholar 

  • Swofford DL, Olsen GJ (1990) Phylogeny reconstruction. In: Hillis DM, Moritz C (eds) Molecular Systematics. Sinauer, Sunderland, Mass, p 411

    Google Scholar 

  • Takahata N (1987) On the overdispersed molecular clock. Genet 116: 169–179

    CAS  Google Scholar 

  • Templeton A (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the humans and apes. Evolution 37: 221–244

    CAS  Google Scholar 

  • Templeton A (1987) Nonparametric phylogenetic inference from restriction cleavage sites. Mol Biol Evol 4: 315–319

    PubMed  CAS  Google Scholar 

  • Thomas WK, Beckenbach A (1989) Variation in salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution. J Mol Evol 29: 233–245

    PubMed  CAS  Google Scholar 

  • Thomas WK, Maa J, Wilson AC (1989) Shifting constraints on tRNA genes during mitochondrial DNA evolution in animals New Biologist 1: 93–100

    CAS  Google Scholar 

  • Thomas WK, Pääbo S, Villablanca FX, Wilson AC (1990) Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. J Mol Evol 31: 101–112

    PubMed  CAS  Google Scholar 

  • Thomas WK, Wilson AC. Mode and tempo of molecular evolution in the nematode Caenorhabditis. Submitted to Genetics

    Google Scholar 

  • Topal MD, Fresco JR (1976) Complementary base pairing and the origin of substitution mutations. Nature 263: 285–289

    PubMed  CAS  Google Scholar 

  • Uhlenbusch I, McCracken A, Gellissen G (1987) The gene for the large (16S) ribosomal RNA from the Locusta migratoria mitochondrial genome. Curr Genet 11: 631–638

    PubMed  CAS  Google Scholar 

  • Upholt WB, David IB (1977) Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution in the D loop regions of mitochondrial DNA. Cell 11: 571–583

    PubMed  CAS  Google Scholar 

  • Vawter L, Brown WM (1986) Nuclear and miotochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234: 194–196

    PubMed  CAS  Google Scholar 

  • Verlaan de Vries M, Bogaard M, van den Elst H, van Boom J, van der Eb A, Bos J (1986) A dot-blot screening procedure for mutated ras oncogenes using synthetic oligodeoxynucleotides. Gene 50: 313–320

    Google Scholar 

  • Vigilant L, Stoneking M, Wilson AC (1988) Conformational mutation in human mtDNA detected by direct sequencing of enzymatically amplified DNA. Nucleic Acids Res 16: 5945–5955

    PubMed  CAS  Google Scholar 

  • Wheeler W, Honeycut R (1988) Paired sequence difference in ribosomal RNAs: Evolutionary and phylogenetic implications. Mol Biol Evol 5: 90–96

    PubMed  CAS  Google Scholar 

  • Williams PL, Fitch WM (1989) Finding the weighted minimal change in a given tree. In: Fernholme B, Bremer K, Jornval H (eds), Nobel Symposium on The Hierarchy of Life, Elsevier, Cambridge p 453

    Google Scholar 

  • Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26: 375–400

    Google Scholar 

  • Wolstenholme DR, Clary DO (1985) Sequence Evolution of Drosophila Mitochondrial DNA. Genetics 109: 725–744

    PubMed  CAS  Google Scholar 

  • Wolstenholme DR, MacFarlane JL, Okimoto R, Clary DO, Wahleithner JA (1987) Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc Natl Acad Sci USA 84: 1324–1328

    PubMed  CAS  Google Scholar 

  • Wu DY, Ugozzoli L, Pal BK, Wallace RB (1989) Allele-specific enzymatic amplification of B-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci USA 86: 2757–2760

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simon, C. (1991). Molecular Systematics at the Species Boundary: Exploiting Conserved and Variable Regions of the Mitochondrial Genome of Animals via Direct Sequencing from Amplified DNA. In: Hewitt, G.M., Johnston, A.W.B., Young, J.P.W. (eds) Molecular Techniques in Taxonomy. NATO ASI Series, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83962-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83962-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83964-1

  • Online ISBN: 978-3-642-83962-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics