Skip to main content

SQUID Concepts and Systems

  • Conference paper
Superconducting Electronics

Part of the book series: NATO ASI Series ((NATO ASI F,volume 59))

Abstract

Superconducting QUantum Interference Devices (SQUIDs) are the most sensitive detectors of magnetic flux currently available. They are amazingly versatile, being able to measure any physical quantity that can be converted to a flux, for example, magnetic field, magnetic field gradient, current, voltage, displacement, and magnetic susceptibility. As a result, the applications of SQUIDs are wide ranging, from the detection of tiny magnetic fields produced by the human brain and the measurement of fluctuating geomagnetic fields in remote areas to the detection of gravity waves and the observation of spin noise in an ensemble of magnetic nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. London F.: Superfluids. Wiley, New York 1950.

    MATH  Google Scholar 

  2. Josephson. B.D.: Possible new effects in superconductive tunneling. Phys. Lett. 1. 251–253 (1962)

    Article  MATH  Google Scholar 

  3. Josephson. B.D.: Supercurrents through barriers. Adv. Phys. 14. 419–451 (1965)

    Article  Google Scholar 

  4. Jaklevic. R.C., Lambe. J., Silver. A.H., and Mercereau. J.E.: Quantum interference effects in Josephson tunneling. Phys. Rev Lett. 12. 159–160 (1964)

    Article  Google Scholar 

  5. Zimmerman. J.E., Thiene. P., Harding. J.T.: Design and operation of stable rf-biased superconducting point-contact quantum devices, and a note on the properties of perfectly clean metal contacts. J. Appl. Phys. 41. 1572–1580 (1970).

    Article  Google Scholar 

  6. Mercereau, J.E.: Superconducting magnetometers. Rev. Phys. Appl. 5. 13–20 (1970)

    Article  Google Scholar 

  7. Nisenoff. M.: Superconducting magnetometers with sensitivities approaching 10−10 gauss. Rev. Phys. Appl. 5. 21–24 (1970).

    Article  Google Scholar 

  8. Stewart. W.C.: Current-voltage characteristics of Josephson junctions. Appl. Phys. Lett. 12. 277–280 (1968).

    Article  Google Scholar 

  9. McCumber D.E.: Effect of ac impedance on dc voltage-current characteristics of Josephson junctions. J. Appl. Phys. 39. 3113–3118 (1968).

    Article  Google Scholar 

  10. Ambegaokar. V. and Halperin. B. L: Voltage due to thermal noise in the dc Josephson effect. Phys. Rev. Lett. 22. 1364–1366 (1969).

    Article  Google Scholar 

  11. Clarke. J. and Koch. R. H.: The impact of high-temperature superconductivity on SQUIDs. Science 242. 217–223(1988).

    Article  Google Scholar 

  12. Likharev. K. K. and Semenov. V. K.: Fluctuation spectrum in superconducting point junctions. Pis’ma Zh. Eksp. Teor. Fiz. 15. 625–629 (1972).

    Google Scholar 

  13. Likharev. K. K. and Semenov. V. K.: Fluctuation spectrum in superconducting point junctions. [JETP Lett. 15. 442–445 (1972)].

    Google Scholar 

  14. Vystavkin. A. N., Gubankov. V.N., Kuzmin. L.S., Likharev. K.K., Migulin. V.V. and Semenov. V.K.: S-c-s junctions as nonlinear elements of microwave receiving devices. Phys. Rev. Appl. 9. 79–109 (1974).

    Article  Google Scholar 

  15. Koch. R.H., Van Harlingen. DJ. and Clarke. J.: Quantum noise theory for the resistively shunted Josephson junction. Phys. Rev Lett. 45. 2132–2135 (1980).

    Article  Google Scholar 

  16. Tesche. C.D. and Clarke. J.: dc SQUID: Noise and Optimization. J. Low. Temp. Phys. 27. 301–331 (1977).

    Article  Google Scholar 

  17. Bruines. J.J.P., de Waal. V.J. and Mooij. J.E.: Comment on “dc SQUID noise and optimization” by Tesche and Clarke. J. Low. Temp. Phys. 46. 383–386 (1982).

    Google Scholar 

  18. De Waal. V.J., Schrijner. P. and Llurba. R. Simulation and optimization of a dc SQUID with finite capacitance. J. Low. Temp. Phys. 54. 215–232.

    Google Scholar 

  19. Ketchen. M.B. and Jaycox. J.M.: Ultra-low noise tunnel junction dc SQUID with a tightly coupled planar input coil. Appl. Phys. Lett. 40. 736–738 (1982).

    Article  Google Scholar 

  20. Jaycox J.M. and Ketchen M.B.: Planar coupling scheme for ultra low noise dc SQUIDs. IEEE Trans. Magn., MAG-17. 400–403 (1981).

    Article  Google Scholar 

  21. Wellstood. F.C., Heiden. C. and Clarke. J.: Integrated dc SQUID magnetometer with high slew rate. Rev. Sci. Inst. 55. 952–957 (1984).

    Article  Google Scholar 

  22. Gurvitch. M., Washington. M.A. and Huggins. H.A.: High quality refactory Josephson tunnel junction utilizing thin aluminum layers. Appl Phys. Lett. 42. 472–474 (1983).

    Article  Google Scholar 

  23. De Waal. V.J., Klapwijk. T:M. and Van den Hamer. P.: High performance dc SQUIDs with submicrometer niobium Josephson junctions. J. Low. Temp. Phys. 53. 287–312 (1983).

    Article  Google Scholar 

  24. Tesche. C.D., Brown. K.H., Callegari. A.C., Chen. M.M., Greiner. J.H Jones. H.C., Ketchen. M.B., Kim. K.K., Kleinsasser. A.W., Notarys. H.A., Proto. G., Wang. R.H. and Yogi. T.: Practical dc SQUIDs with extremely low l/f noise. IEEE Trans. Magn. MAG-21. 1032–1035 (1985).

    Article  Google Scholar 

  25. Pegrum. C.M., Hutson. D., Donaldson. G.B. and Tugwell. A.: DC SQUIDs with planar input coils. IEEE Trans. Magn. MAG-21. 1036–1039 (1985).

    Article  Google Scholar 

  26. Noguchi. T., Ohkawa. N. and Hamanaka. K.: Tunnel junction dc SQUID with a planar input coil. SQUID 85 Superconducting Quantum Interference Devices and their Applications. Ed. Hahlbohm. H D and Lubbig. H. (Walter de Gruyter, Berlin, 1985) 761–766.

    Google Scholar 

  27. Muhlfelder. B., Beall. J.A., Cromar. M.W. and Ono. R.H.: Very low noise tightly coupled dc SQUID amplifiers. Appl. Phys. Lett. 49. 1118–1120 (1986).

    Article  Google Scholar 

  28. Knuutila. J., Kajola. N., Seppä. H., Mutikainen. R. and Salmi. J.: Design optimization and construction of a dc SQUID with complete flux transformer circuits. J. Low. Temp. Phys. 71. 369–392 (1988).

    Article  Google Scholar 

  29. Carelli. P. and Foglietti. V.: Behavior of a multiloop dc superconducting quantum interference device. J. Appl. Phys. 53. 7592–7598 (1982).

    Article  Google Scholar 

  30. Clarke. J., Goubau. W.M. and Ketchen. M.B.: J. Low Temp Phvs 25. 99–144 (1976).

    Article  Google Scholar 

  31. Ketchen. M.B., Goubau. W.M., Clarke. J. and Donaldson. G.B.: Superconducting thin-film gradiometer. J. Appl. Phys. 44. 4111–4116 (1978).

    Article  Google Scholar 

  32. Wellstood. F.C., and Clarke. J.: unpublished.

    Google Scholar 

  33. Wellstood. F.C., Urbina. C. and Clarke. J.: Low-frequency noise in dc superconducting quantum interference devices below 1K. Appl. Phys. Lett. 50. 772–774 (1987).

    Article  Google Scholar 

  34. Roukes. M. L., Freeman. M. R., Germain. R. S., Richardson. R. C. and Ketchen. M. B.: Hot electrons and energy transport in metals at millikelvin temperatures. Phys. Rev. Lett. 55. 422–425 (1985).

    Article  Google Scholar 

  35. Wellstood. F.C., Urbina. C. and Clarke. J.: Hot electron effect in the dc SQUID. IEEE Trans. Magn. MAG-25. 1001–1004 (1989); Appl. Phys. Lett. (to be published).

    Article  Google Scholar 

  36. Ketchen. M.B., Awschalom. D.D., Gallagher. W.J., Kleinsasser. A.W., Sandstrom. R.L., Rozen. J.R. and Bumble. B.: Design, fabrication and performance of integrated miniature SQUID susceptometers. IEEE Trans. Magn. MAG-25. 1212–1215 (1989).

    Article  Google Scholar 

  37. Koch. R.H., Clarke. J., Goubau. W.M., Martinis. J.M., Pegrum. C.M. and Van Harlingen. D.J.: Flicker (l/f) noise in tunnel junction dc SQUIDs. J. Low. Temp. Phys. 51. 207–224 (1983).

    Article  Google Scholar 

  38. Rogers. C.T. and Buhrman. R.A.: Composition of l/f noise in metal-insulator-metal tunnel junctions. Phys. Rev. Lett. 53. 1272–1275 (1984).

    Article  Google Scholar 

  39. Dutta. P. and Horn. P.M.: Low-frequency fluctuations in solids: l/f noise. Rev. Mod. Phys. 53. 497–516 (1981).

    Article  Google Scholar 

  40. Savo. B., Wellstood. F.C. and Clarke. J.: Low-frequency excess noise in Nb-Al2O3-Nb Josephson tunnel junction. Appl. Phys. Lett. 50. 1757–1759 (1987).

    Article  Google Scholar 

  41. Tesche. C.D., Brown. R. H., Callegari. A. C., Chen. M. M., Greiner. J. H., Jones. H. C., Ketchen. M. B., Kim. K. K., Kleinsasser. A. W., Notarys. H. A., Proto. G., Wang. R. H. and Yogi. T.: Well-coupled dc SQUID with extremely low l/f noise. Proc. 17th International Conference on low temperature physics LT-17. (North Holland, Amsterdam 1984) 263–264.

    Google Scholar 

  42. Foglietti. V, Gallagher. W. J., Ketchen. M. B., Kleinsasser. A. W., Koch. R. H., Raider. S. I. and Sandstrom. R. L.: Low-frequency noise in low l/f noise dc SQUIDs. Appl. Phys. Lett. 49. 1393–1395 (1986).

    Article  Google Scholar 

  43. Biomagnetic Technologies Inc. 4174 Sorrento Valley Blvd., San Diego, CA 92121.

    Google Scholar 

  44. Fujimaki. N., Tamura. H., Imamura. T. and Hasuo. S.: A single-chip SQUID magnetometer. Digest of Tech. papers of 1988 International Solid-state conference. (ISSCC) San Francisco. pp. 40–41. A longer version with the same title is to be published.

    Google Scholar 

  45. Drung. D.: Digital Feedback loops for dc SQUIDs. Cryogenics 26. 623–627 (1986).

    Article  Google Scholar 

  46. Drung. D., Crocoll. E., Herwig. R., Neuhaus. M. and Jutzi. W.: Measured performance parameters of gradiometers with digital output. IEEE Trans. Magn. MAG-25. 1034–1037 (1989).

    Article  Google Scholar 

  47. Mück. M. and Heiden. C.: Simple dc SQUID system based on a frequency modulated relaxation oscillator. IEEE Trans. Magn. MAG-25. 1151–1153 (1989).

    Article  Google Scholar 

  48. Clarke. J.: Superconducting QUantum Interference Devices for Low Frequency Measurements. Superconductor Applications: SQUIDs and Machines, Ed. Schwartz. B. B. and Foner. S. (Plenum New York 1977). pp 67–124.

    Google Scholar 

  49. Giffard. R. P., Webb. R.A. and Wheatley. J.C.: Principles and methods of low-frequency electric and magnetic measurements using rf-biased point-contact superconducting device. J. Low. Temp. Phys. 6. 533–610 (1972).

    Article  Google Scholar 

  50. Kurkijärvi. J.: Intrinsic fluctuations in a superconducting ring closed with a Josephson junction. Phys. Rev. B 6. 832–835 (1972).

    Article  Google Scholar 

  51. Kurkijärvi. J. and Webb. W.W.: Thermal noise in a superconducting flux detector. Proc. Applied Superconductivity Conf. (Annapolis, MD.) 581–587 (1972).

    Google Scholar 

  52. Jackel. L.D. and Buhrman. R.A.: Noise in the rf SQUID. J. Low. Temp. Phys. 19. 201–246 (1975).

    Article  Google Scholar 

  53. Ehnholm. G.J.: Complete linear equivalent circuit for the SQUID. SQUID Superconducting Quantum Interference Devices and their Applications. Ed. Hahlbohm. H.D. and Lubbig. H. (Walter de Gruyter, Berlin, 1977) 485–499

    Google Scholar 

  54. Ehnholm. G.J.: Theory of the signal transfer and noise properties of the rf SQUID. J. Low. Temp. Phys. 29. 1–27 (1977).

    Article  Google Scholar 

  55. Hollenhorst. H.N. and Giffard. R.P.: Input noise in the hysteretic rf SQUID: theory and experiment. J. Appl. Phys. 51. 1719–1725 (1980).

    Article  Google Scholar 

  56. Kurkijärvi. J.: Noise in the superconducting flux detector. J. Appl. Phys. 44. 3729–3733 (1973).

    Article  Google Scholar 

  57. Giffard. R.P., Gallop. J.C. and Petley. B.N.: Applications of the Josephson effects. Prog. Quant. Electron 4. 301–402 (1976).

    Article  Google Scholar 

  58. Ehnholm. G.J., Islander. S.T., Ostman. P. and Rantala. B.: Measurements of SQUID equivalent circuit parameters. J. de Physique 39. colloque C6. 1206–1207 (1978).

    Google Scholar 

  59. Giffard. R.P. and Hollenhorst. J.N.: Measurement of forward and reverse signal transfer coefficients for an rf-biased SQUID. Appl. Phys. Lett. 32. 767–769 (1978).

    Article  Google Scholar 

  60. Jackel. L. D., Webb. W. W., Lukens. J. E. and Pei. S. S.: Measurement of the probability distribution of thermally excited fluxoid quantum transitions in a superconducting ring closed by a Josephson junction. Phys. Rev. B9. 115–118 (1974).

    Google Scholar 

  61. Long. A., Clark. T. D., Prance. R. J. and Richards. M. G.: High performance UHF SQUID magnetometer. Rev. Sci. Instrum. 50. 1376–1381 (1979).

    Article  Google Scholar 

  62. Hollenhorst. J. N. and Giffard. R. P.: High sensitivity microwave SQUID. IEEE Trans. Magn. MAG-15. 474–477 (1979).

    Article  Google Scholar 

  63. Ahola. H., Ehnholm. G. H., Rantala. B. and Ostman. P.: Cryogenic GaAs-FET amplifiers for SQUIDs. J. de Physique 39. colloque C6. 1184–1185 (1978)

    Google Scholar 

  64. Ahola. H., Ehnholm. G. H., Rantala. B. and Ostman. P.: Cryogenic GaAs-FET amplifiers for SQUIDs J. Low Temp. Phys. 35. 313–328 (1979).

    Article  Google Scholar 

  65. For a review, see Clarke. J.: Advances in SQUID Magnetometers. IEEE Trans. Election Devices. ED-27. 1896–1908 (1980).

    Article  Google Scholar 

  66. Zimmerman. J. E.: Sensitivity enhancement of Superconducting Quantum Interference Devices through the use of fractional-turn loops. J. Appl. Phys. 42. 4483–4487 (1971).

    Article  Google Scholar 

  67. Shoenberg. D.: Superconductivity (Cambridge University Press 1962) 30.

    Google Scholar 

  68. For a review, see Clarke. J.: Geophysical Applications of SQUIDs. IEEE Trans. Magn. MAG-19. 288–294 (1983).

    Article  Google Scholar 

  69. De Waal. V. J. and Klapwijk. T. M.: Compact Integrated dc SQUID gradiometer. Appl. Phys. Lett. 41. 669–671 (1982).

    Article  Google Scholar 

  70. Van Nieuwenhuyzen G. J. and de Waal. V. J.: Second order gradiometer and dc SQUID integrated on a planar substrate. Appl. Phy. Lett. 46. 439–441 (1985).

    Article  Google Scholar 

  71. Carelli. P. and Foglietti. V.: A second derivative gradiometer integrated with a dc superconducting interferometer. J. Appl. Phys. 54. 6065–6067 (1983).

    Article  Google Scholar 

  72. Koyangi. M., Kasai. N., Chinore. K., Nakanishi. M. and Kosaka. S.: An integrated dc SQUID gradiometer for biomagnetic application. IEEE Trans. Magn. MAG-25. 1166–1169 (1989).

    Article  Google Scholar 

  73. Knuutila. J., Kajola. M., Mutikainen. R., Salmi. J.: Integrated planar dc SQUID magnetometers for multichannel neuromagnetic measurements. Proc. ISEC’ 87 p. 261.

    Google Scholar 

  74. For reviews, see Romani. G. L., Williamson. S. J. and Kaufman. L.: Biomagnetic instrumentation. Rev. Sci. Instrum. 53. 1815–1845 (1982)

    Article  Google Scholar 

  75. Buchanan. D. S., Paulson. D. and Williamson. S. J.: Instrumentation for clinical applications of neuromagnetism. Adv. Cryo. Eng. (to be published).

    Google Scholar 

  76. Knuutila. J.: European Physical Society Workshop “SQUID: State of Art, Perspectives and Applications”. Rome, Italy June 22–24, 1988 (unpublished).

    Google Scholar 

  77. Barth. D. S., Sutherling. W., Engel. J. Jr. and Beatty J.: Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain. Science 223. 293–296 (1984).

    Article  Google Scholar 

  78. Romani. G. L., Williamson. S. J. and Kaufman. L.: Tonotopic organization of the human auditory cortex. Science 216. 1339–1340 (1982).

    Article  Google Scholar 

  79. Cabrera. B.: First results from a superconductive detector for moving magnetic monopoles. Phys. Rev. Lett. 48. 1378–1381 (1982).

    Article  Google Scholar 

  80. Quantum Design, 11568 Sorrento Valley Road, San Diego, CA 92121.

    Google Scholar 

  81. Ketchen. M. B., Kopley. T. and Ling. H.: Minature SQUID susceptometer. Appl Phys. Lett. 44.1008–1010 (1984).

    Article  Google Scholar 

  82. Awschalom. D. D. and Warnock. J.: Picosecond magnetic spectroscopy with integrated dc SQUIDs. IEEE Trans. Magn. MAG-25. 1186–1192 (1989).

    Article  Google Scholar 

  83. Clarke. J.: A superconducting galvanometer employing Josephson tunneling. Phil. Mag. 13. 115–127 (1966).

    Article  Google Scholar 

  84. Hilbert. C. and Clarke. J.: DC SQUIDs as radiofrequency amplifiers. J. Low Temp. Phys. 61. 263–280 (1985).

    Article  Google Scholar 

  85. Tesche. C. D. and Clarke. J.: DC SQUID: current noise. J. Low Temp. Phys. 37. 397–403 (1979).

    Article  Google Scholar 

  86. Hilbert. C. and Clarke. J.: Measurements of the dynamic input impedance of a dc SQUID. J. Low Temp. Phys. 61. 237–262 (1985).

    Article  Google Scholar 

  87. Martinis. J. M. and Clarke. J.: Signal and noise theory for the dc SQUID. J. Low Temp. Phys. 61. 227–236 (1985), and references therein.

    Article  Google Scholar 

  88. Koch. R.H., Van Harlingen. D. J. and Clarke. J.: Quantum noise theory for the dc SQUID. Appl. Phys. Lett. 38. 380–382 (1981).

    Article  Google Scholar 

  89. Danilov. V. V., Likharev. K. K. and Zorin. A. B.: Quantum noise in SQUIDs. IEEE Trans. Magn. MAG-19. 572–575 (1983).

    Article  Google Scholar 

  90. Hilbert. C., Clarke. J., Sleator. T. and Hahn. E. L.: Nuclear quadruple resonance detected at 30MHz with a dc superconducting quantum interference device. Appl. Phys. Lett. 47. 637–639 (1985). (See references therein for earlier work on NMR with SQUIDS).

    Article  Google Scholar 

  91. Fan. N. Q., Heaney. M.B., Clarke. J., Newitt. D., Wald. L. L., Hahn. E. L., Bielecke. A. and Pines. A.: Nuclear magnetic resonance with dc SQUID preamplifiers. IEEE Trans. Magn. MAG-25. 1193–1199 (1989).

    Article  Google Scholar 

  92. Sleator. T., Hahn. E. L., Heaney, M.B., Hilbert. C. and Clarke. J.: Nuclear electric quadrupole induction of atomic polarization. Phys. Rev. Lett. 57. 2756–2759 (1986).

    Article  Google Scholar 

  93. Sleator. T., Hahn. E. L., Hilbert, C. and Clarke. J.: Nuclear-spin noise and spontaneous emission. Phys. Rev. B. 36. 1969–1980 (1987).

    Article  Google Scholar 

  94. For an elementary review on gravity waves, see Shapiro. S. L., Stark. R.F. and Teukolsky. S. J.: The search for gravitational waves. Am. Sci. 73. 248–257 (1985).

    Google Scholar 

  95. For a review on gravity-wave antennae, see Michelson. P. F., Price. J. C. and Taber. R. C: Resonant-mass detectors of gravitational radiation. Science 237.150–157 (1987).

    Google Scholar 

  96. Paik. H. J.: Superconducting tensor gravity gradiometer with SQUID readout. SQUID Applications to Geophysics. Ed. Weinstock H. and Overton. W. C., Jr. (Soc. of Exploration Geophysicists, Tulsa, Oklahoma, 1981) 3–12.

    Google Scholar 

  97. Mapoles. E.: A superconducting gravity gradiometer. SQUID Applications to Geophysics. Ed. Weinstock H. and Overton. W. C., Jr. (Soc. of Exploration Geophysicists, Tulsa, Oklahoma, 1981). 153–157.

    Google Scholar 

  98. Bednorz. J. G. and Muller. K. A.: Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B64. 189–193 (1986).

    Article  Google Scholar 

  99. Koch. R. H., Umbach. C. P., Clark. G. J., Chaudhari. P. and Laibowitz. R. B.: Quantum interference devices made from superconducting oxide thin films. Appl. Phys. Lett. 51. 200–202 (1987).

    Article  Google Scholar 

  100. Zimmerman. J. E., Beall. J. A., Cromar. M. W. and Ono. R. H.: Operation of a Y-Ba-Cu-O rf SQUID at 81K. Appl. Phys. Lett. 51. 617–618 (1987).

    Article  Google Scholar 

  101. Ferrari. M. J., Johnson. M., Wellstood. F. C., Clarke. J., Rosenthal. P. A., Hammond. R. H. and Beasley. M. R.: Magnetic flux noise in thin film rings of YBa2Cu307-δ;. Appl. Phys. Lett. 53. 695–697 (1988).

    Article  Google Scholar 

  102. Shiota. T., Takechi. K., Takai. Y and Hayakawa. H.: An observation of quasiparticle tunneling characteristics in all Y-Ba-Cu-0 thin film tunnel junctions (unpublished).

    Google Scholar 

  103. Mankiewich. P. M., Schwartz. D. B., Howard. R. E., Jackel. L. D., Straughn. B. L., Burkhardt. E. G. and Dayem. A. H.: Fabrication and characterization of an YBa2Cu307/Au/YBa2Cu307 S-N-S microbridge. Fifth International Workshop on Future Electron Devices — High Temperature Superconducting Devices. June 2–4, 1988, Miyaki-Zao, Japan. 157–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clarke, J. (1989). SQUID Concepts and Systems. In: Weinstock, H., Nisenoff, M. (eds) Superconducting Electronics. NATO ASI Series, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83885-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83885-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83887-3

  • Online ISBN: 978-3-642-83885-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics