Skip to main content

Self-Similar Basin Boundary in a Continuous System

  • Conference paper
Nonlinear Dynamics in Engineering Systems

Summary

A four-variable ordinary differential equation with hyperchaos is investigated further numerically. A self-similar Sierpinski-type fractal is found in a plane of initial conditions if the prospective fate of each point (whether it escapes through the one or the other escape hole in the exploded hyperchaotic attractor) is used for a coloring criterion. A basin boundary of the same qualitative shape therefore exists in either this equation or a closely related one. All hyper-chaotic systems are eligible for an analogous investigation — both numerically and, if possible, experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Smale (1967). Bull. Amer. Math. Soc. 73, 747.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Mandelbrot, The Fractal Geometry of Nature. Freeman, San Francisco 1983.

    Google Scholar 

  3. O.E. Rössler and C. Mira (1981), Higher-order chaos in a constrained differential equation with an explicit cross section, extended abstract in: Tagungsbericht 40/1981, pp. 9–10. Mathematisches Forschungsinstitut Oberwolfach, 7620 Oberwolfach-Walke, West Germany.

    Google Scholar 

  4. O.E. Rössler (1983). Z. Naturforsch. 38 a, 788.

    MATH  ADS  MathSciNet  Google Scholar 

  5. C. Mira (1978), Complex dynamics generated by a third-order differential equation (in French), in: Proc. “Equadiff 78” ( R. Conti, G. Sestini and G. Villari, Eds.), pp. 25–36. Florence, Italy.

    Google Scholar 

  6. O.E. Rössler (1976). Z. Naturforsch. 31 a, 259.

    ADS  Google Scholar 

  7. M. Hénon (1976). Commun. Math. Phys. 50, 69.

    Article  MATH  ADS  Google Scholar 

  8. C. Mira (1979). C. R. Acad. Sc. Paris 288 A, 591.

    Google Scholar 

  9. I. Gumowski and C. Mira (1975). C. R. Acad. Sc. Paris 280 A, 905.

    MATH  MathSciNet  Google Scholar 

  10. O.E. Rössler, C. Kahlert, J. Parisi, J. Peinke and B. Röhricht (1986). Z. Naturforsch. 41 a, 819.

    Google Scholar 

  11. O.E. Rössler, J. Hudson, M. Klein and R. Wais (1988), Self-similar basin boundary in an invertible system (folded-towel map), in: Dynamic Patterns in Complex Systems ( J.A.S. Kelso, A.J. Mandell and M.F. Shlesinger, Eds.), pp. 209–218. World Scientific, Singapore.

    Google Scholar 

  12. O.E. Rössler and J.L. Hudson (1989), Self-similarity in hyperchaotic data, in: Chaotic Dynamics in Brain Function ( E. Basar, Ed.), pp. 113–121. Springer-Verlag, Berlin.

    Google Scholar 

  13. O.E. Rössler (1979). Phys. Lett. 71 A, 155.

    Google Scholar 

  14. O.E. Rössler, J.L. Hudson and M. Klein (1989). J. Phys. Chem. 93, 2858.

    Google Scholar 

  15. O.E. Rössler and C. Kahlert (1987). Z. Naturforsch. 42 a, 324.

    Google Scholar 

  16. P.M. Battelino, C. Grebogi, E. Ott, J.A. Yorke and E.D. Yorke (1988). Physica 32 D, 296.

    Article  MATH  MathSciNet  Google Scholar 

  17. O.E. Rössler (1985), Example of an axiom-A ODE, in: Chaos, Fractals and Dynamics ( P. Fischer and W.R. Smith, Eds.), pp. 105–114. M. Dekker, New York.

    Google Scholar 

  18. F. Moon, Personal communication 1989.

    Google Scholar 

  19. G. Baier, K. Wegmann and J.L. Hudson (1989). Phys. Lett. A (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlags Berlin Heidelberg

About this paper

Cite this paper

Rossler, O.E., Hudson, J.L., Klein, M., Mira, C. (1990). Self-Similar Basin Boundary in a Continuous System. In: Schiehlen, W. (eds) Nonlinear Dynamics in Engineering Systems. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83578-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83578-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83580-3

  • Online ISBN: 978-3-642-83578-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics