Skip to main content

The Nervous System: Radiobiology and Experimental Pathology

  • Chapter
Radiopathology of Organs and Tissues

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Some of the most extensive studies on the acute and delayed effects of radiation on the brain have been done in rhesus monkeys, notably by Haymaker (1969) and Caveness (1980). In the studies by Haymaker dose-response relationships are difficult to establish because monkeys were whole body irradiated with high energy protons and an inhomogeneous dose distribution. Because of the limited penetration of the lower energy protons (32 and 55 MeV), several monkeys survived long enough for some insight to be obtained into the delayed responses of the brain. The importance of Haymaker’s review (1969) is the consideration of the role of various cell types in acute and delayed radiation-induced lesions in the CNS. Neurons have been shown to be extraordinarily radioresistant, with doses as high as 4000 Gy required to destroy a nerve cell within 24 days in a very small irradiated volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbatuci JS, Delozier T, Quint R, Roussel A, Brune D (1978) Radiation myelopathy of the cervical spinal cord: time, dose and volume factors. Int J Radiat Oncol Biol Phys 4: 239–248

    Google Scholar 

  • Ang KK, van der Schueren E, Notter G et al. (1982) Split course multiple daily fractionated radiotherapy schedule combined with misonidazole for the management of grade III and IV gliomas. Int J Radiat Oncol Biol Phys 8: 1657–1664

    PubMed  CAS  Google Scholar 

  • Ang KK, van der Kogel AJ, van der Schueren E (1983) The effect of small radiation doses on the rat spinal cord: the concept of partial tolerance. Int J Radiat Oncol Biol Phys 9: 1487–1491

    PubMed  CAS  Google Scholar 

  • Ang KK, van der Kogel AJ, van Dam J, van der Schueren E (1984) The kinetics of repair of sublethal damage in the rat cervical spinal cord during fractionated irradiations. Radiother Oncol 1: 247–253

    PubMed  CAS  Google Scholar 

  • Ang KK, van der Kogel AJ, van der Schueren E (1985) Lack of evidence for increased tolerance of rat spinal cord with decreasing fraction doses below 2 Gy. Int J Radiat Oncol Biol Phys 11: 105–110

    PubMed  CAS  Google Scholar 

  • Ang KK, van der Kogel AJ, van der Schueren E (1986) Effect of combined AZQ and radiation on the tolerance of the rat spinal cord. J Neurooncol 3: 349–352

    PubMed  CAS  Google Scholar 

  • Ang KK, Thames HD Jr, van der Kogel AJ, van der Schueren E (1987) Is the rate of repair of radiation- induced sublethal damage in rat spinal cord dependent on the size of the dose per fraction? Int J Radiat Oncol Biol Phys 13: 552–562

    Google Scholar 

  • Asbell SO, Kramer S (1971) Oxygen effect on the production of radiation-induced myelitis in rats. Radiology 98: 678–681

    PubMed  CAS  Google Scholar 

  • Asscher AW, Anson SG (1962) Arterial hypertension and irradiation damage to the nervous system. Lancet 1343–1346

    Google Scholar 

  • Atkins HL, Tretter P (1966) Time-dose considerations in radiation myelopathy. Acta Radiol 5: 79–93

    CAS  Google Scholar 

  • Barendsen GW (1982) Dose-fractionation, dose-rate and iso-effect relationships for normal tissue response. Int J Radiat Oncol Biol Phys 8: 1981–1997

    PubMed  CAS  Google Scholar 

  • Beck ER, LeCouteur RA, Powers BE, Gillette EL (1988) Pathogenesis and prediction of spinal cord irradiation damage. In: Proceedings Annual Meeting Radiation Research Society, Philadelphia, p 130

    Google Scholar 

  • Berg NO, Lindgren M (1958) Time-dose relationship and morphology of delayed radiation lesions of the brain in rabbits. Acta Radiol [Suppl] 167: 1–118

    CAS  Google Scholar 

  • Berg NO, Lindgren M (1963) Relationship between field size and tolerance of rabbit brain to roentgen irradiation (200 kV) via a slit-shaped field. Acta Radiol 1: 147–168

    CAS  Google Scholar 

  • Blakemore WF, Palmer AC (1982) Delayed infarction of spinal cord white matter following x-irradiation. J Pathol 137: 273–280

    PubMed  CAS  Google Scholar 

  • Boden G (1948) Radiation myelitis of the cervical spinal cord. Br J Radiol 21: 464–469

    PubMed  CAS  Google Scholar 

  • Bradley WG, Fewings JD, Cumming WJK, Harrison RM, Faulds AJ (1977) Delayed myeloradiculopathy produced by spinal x-irradiation in the rat. J Neurol Sci 31: 63–82

    PubMed  CAS  Google Scholar 

  • Calvo W, Hopewell JW, Reinhold HS, van den Berg AP, Yeung TK (1987) Dose-dependent and time-dependent changes in the choroid plexus of the irradiated rat brain. Br J Radiol 60: 1109–1117

    PubMed  CAS  Google Scholar 

  • Calvo W, Hopewell JW, Reinhold HS, Yeung TK (1988) Time- and dose-related changes in the white matter of the rat brain after single doses of x-rays. Br J Radiol 61: 1043–1052

    PubMed  CAS  Google Scholar 

  • Carsten A, Zeman W (1966) The control of variables in radiopathological studies on mammalian nervous tissue. Int J Radiat Biol 10: 65–74

    CAS  Google Scholar 

  • Cavanagh JB (1968) Effects of x-irradiation on the proliferation of cells in peripheral nerve during wallerian degeneration in the rat. Br J Radiol 41: 275–281

    PubMed  CAS  Google Scholar 

  • Cavanagh JB, Hopewell JW (1972) Mitotic activity in the subependymal plate of rats and the long-term consequences of x-irradiation. J Neurol Sei 15: 471–482

    CAS  Google Scholar 

  • Caveness WF (1980) Experimental observations: delayed necrosis in normal monkey brain. In: Gilbert HA, Kagan AR (eds) Radiation damage to the nervous system. Raven, New York, pp 1–38

    Google Scholar 

  • Cohen L (1982) The tissue volume factor in radiation oncology. Int J Radiat Oncol Biol Phys 8:1771–1774

    PubMed  CAS  Google Scholar 

  • Cohen L, Creditor M (1981) An iso-effect table for radiation tolerance of the human spinal cord. Int J Radiat Oncol Biol Phys 7: 961–966

    PubMed  CAS  Google Scholar 

  • Cohen L, Creditor M (1983) Iso-effect tables for tolerance of irradiated normal human tissues. Int J Radiat Oncol Biol Phys 9: 233–241

    PubMed  CAS  Google Scholar 

  • Coy P, Dolman CL (1971) Radiation myelopathy in relation to oxygen level. Br J Radiol 44: 705–707

    PubMed  CAS  Google Scholar 

  • Dale RG (1985) The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 58: 515–528

    PubMed  CAS  Google Scholar 

  • Dische S, Warburton MF, Saunders MI (1988) Radiation myelitis and survival in the radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys 15: 75–81

    PubMed  CAS  Google Scholar 

  • Douglas BG, Fowler JF (1976) The effect of multiple small doses of x-rays on skin reactions in the mouse and a basic interpretation. Radiat Res 66: 301–316

    Google Scholar 

  • Fein JM, Di Chiro G (1974) Experimental postirradiation myelopathy. In: Annual Report of the Armed Forces Radiobiology Research Institute, Washington, p 85

    Google Scholar 

  • Ffrench-Constant C, Raff MC (1986) Proliferating bipotential glial progenitor cells in adult rat optic nerve. Nature 319: 499–502

    PubMed  CAS  Google Scholar 

  • Fike JR, Cann CE, Turowski K, Higgins RJ, Chan ASL, Phillips TL, Davis RL (1988) Radiation dose response of normal brain. Int J Radiat Oncol Biol Phys 14: 63–70

    PubMed  CAS  Google Scholar 

  • Geraci JP, Thrower PD, Jackson KL, Christensen GM, Parker RG, Fox MS (1974) The relative biological effectiveness of fast neutrons for spinal cord injury. Radiat Res 59: 496–503

    PubMed  CAS  Google Scholar 

  • Geyer JR, Taylor EM, Milstein JM et al. (1988) Radiation, methotrexate, and white matter necrosis: laboratory evidence for neural radioprotection with preirradiation methotrexate. Int J Radiat Oncol Biol Phys 15: 373–375

    PubMed  CAS  Google Scholar 

  • Glicksman AS, Bliven SF, Leith JT (1982) Modification of radiation damage in rat spinal cord by mitotane. Cancer Treat Rep 66: 1545–1547

    PubMed  CAS  Google Scholar 

  • Goffinet DR, Marsa GW, Brown JM (1976) The effects of single and multifraction radiation courses on the mouse spinal cord. Radiology 119: 709–713

    PubMed  CAS  Google Scholar 

  • Griffin TW, Rasey JS, Bleyer WA (1977) The effect of photon irradiation on blood-brain permeability to methotrexate in mice. Cancer 40: 1109–1111

    PubMed  CAS  Google Scholar 

  • Habermalz HJ (1982) Die Strahlenmyelopathie der Maus; Isoeffektbeziehungen und histologisches Bild nach fraktionierter Bestrahlung. Habilitationsschrift, Berlin, pp 1–62

    Google Scholar 

  • Habermalz HJ, Valley B, Habermalz E (1987) Radiation myelopathy of the mouse spinal cord - isoeffect correlations after fractionated radiation. Strahlenther Onkol 163: 626–632

    PubMed  CAS  Google Scholar 

  • Hassler O (1968) Cellular kinetics of the peripheral nerve and striated muscle after a single dose of x-rays. Z Zellforsch 85: 62–66

    PubMed  CAS  Google Scholar 

  • Hayashi N, Green BA, Gonzalez-Carvajal M, Mora J, Veraa RP (1983) Local blood flow, oxygen tension, and oxygen consumption in the rat spinal cord. J Neurosurg 58: 516–530

    PubMed  CAS  Google Scholar 

  • Haymaker W (1969) Effects of ionizing radiation on nervous tissue. In: Bourne GH (ed) Structure and function of the nervous system, vol 3. Academic, New York, pp 441–518

    Google Scholar 

  • Hopewell JW (1979) Late radiation damage to the central nervous system: a radiobiological interpretation. Neuro- pathol Appl Neurobiol 5: 329–343

    CAS  Google Scholar 

  • Hopewell JW, van der Kogel AJ (1988) Volume effect in spinal cord. Br J Radiol 61: 973–975

    Google Scholar 

  • Hopewell JW, Wright EA (1970) The nature of latent cerebral irradiation damage and its modification by hypertension. Br J Radiol 43: 161–167

    PubMed  CAS  Google Scholar 

  • Hopewell JW, Morris AD, Dixon-Brown A (1987) The influence of field size on the late tolerance of the rat spinal cord to single doses of x-rays. Br J Radiol 60: 1099–1108

    PubMed  CAS  Google Scholar 

  • Hornsey S, White A (1980) Isoeffect curve for radiation myelopathy. Br J Radiol 53: 168–169

    PubMed  CAS  Google Scholar 

  • Hornsey S, Morris CC, Myers R, White A (1981a) Relative biological effectiveness for damage to the central nervous system by neutrons. Int J Radiat Oncol Biol Phys 7: 185–189

    PubMed  CAS  Google Scholar 

  • Hornsey S, Morris CC, Myers R (1981b) The relationship between fractionation and total dose for x-ray induced brain damage. Int J Radiat Oncol Biol Phys 7: 393–396

    PubMed  CAS  Google Scholar 

  • Hornsey S, Myers R, Coultas PG, Rogers MA, White A (1981c) Turnover of proliferative cells in the spinal cord after x-irradiation and its relation to time-dependent repair of radiation damage. Br J Radiol 54: 1081–1085

    PubMed  CAS  Google Scholar 

  • Hornsey S, Myers R, Warren P (1982) Residual injury in the spinal cord after treatment with x-rays or neutrons. Br J Radiol 55: 516–519

    PubMed  CAS  Google Scholar 

  • Hubbard BM, Hopewell JW (1980) Quantitative changes in the cellularity of the rat subependymal plate after x-irradiation. Cell Tissue Kinet 13: 403–413

    PubMed  CAS  Google Scholar 

  • Innes JRM, Carsten A (1961) Demyelinating or malacic myelopathy. Arch Neurol 4: 190–199

    PubMed  CAS  Google Scholar 

  • Janzen AH, Warren S (1942) Effect of roentgen rays on the peripheral nerve of the rat. Radiology 38: 333–337

    Google Scholar 

  • Keyeux A, Ochrymowicz-Bemelmans D, Charlier AA (1987) Early and late effect on the blood brain barrier (BBB) permeability and the antipyrine (AP) distribution volumes in the irradiated rat brain. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Radiation research (Proceedings of the 8th International Congress of Radiation Research), vol 1. Taylor & Francis, London, p 260

    Google Scholar 

  • Kinsella TJ, Sindelar WF, DeLuca AM et al. (1985) Tolerance of peripheral nerve to intraoperative radiotherapy (IORT): clinical and experimental studies. Int J Radiat Oncol Biol Phys 11: 1579–1585

    PubMed  CAS  Google Scholar 

  • Kinsella TJ, Sindelar WF, DeLuca AM (1988) Threshold dose for peripheral nerve injury following intraoperative radiotherapy (IORT) in a large animal model Int. J Radiat Oncol Biol Phys 15 [Suppl. I]: p. 205 (abstract)

    Google Scholar 

  • Knowles JF (1981) The effects of single dose x-irradiation on the guinea-pig spinal cord. Int J Radiat Biol 40: 265–275

    CAS  Google Scholar 

  • Knowles JF (1983) The radiosensitivity of the guinea-pig spinal cord to x-rays: the effect of retreatment at one year and the effect of age at the time of irradiation. Int J Radiat Biol 44: 433–442

    CAS  Google Scholar 

  • LeCouteur RA, Gillette EL, Powers BE, Child G, Mc-Chesney SL, Ingram JT (1989) Peripheral neuropathies following experimental intraoperative radiation therapy (IORT). Int J Radiat Oncol Biol Phys 17: 583–590

    PubMed  CAS  Google Scholar 

  • Leith JT, DeWyngaert JK, Glicksman AS (1981) Radiation myelopathy in the rat: an interpretation of dose effect relationships. Int J Radiat Oncol Biol Phys 7: 1673–1677

    PubMed  CAS  Google Scholar 

  • Leith JT, Ainsworth EJ, Alpen EL (1983) Heavy-ion radiobiology: normal tissue studies. In: Lett JT Adler H (eds) Advances in radiation biology. Academic, New York, pp 191–236

    Google Scholar 

  • Mastaglia FL, McDonald WI, Watson JV, Yogendran K (1976) Effects of x-radiation on the spinal cord: an experimental study of the morphological changes in central nerve fibres. Brain 99: 101–122

    PubMed  CAS  Google Scholar 

  • Masuda K, Reid BO, Withers HR (1977) Dose effect relationship for epilation and late effects on spinal cord in rats exposed to gamma rays. Radiology 122: 239–242

    PubMed  CAS  Google Scholar 

  • Menten J, Landuyt W, van der Kogel AJ, Ang KK, van der Schueren E (1989) Effects of high dose intraperitoneal cytosine arabinoside on the radiation tolerance of the rat spinal cord. Int J Radiat Oncol Biol Phys 17: 131–134

    PubMed  CAS  Google Scholar 

  • Myers R, Rogers MA, Hornsey S (1986) A reappraisal of the roles of glial and vascular elements in the development of white matter necrosis in irradiated rat spinal cord. Br J Cancer 53 [Suppl VII]: 221–223

    Google Scholar 

  • Myers R, Thozer GM, Hornsey S (1987) Microvascular changes in irradiated rat spinal cord. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Radiation research (Proceedings of the 8th International Congress of Radiation Research), vol 1. Taylor & Francis, London, p 266

    Google Scholar 

  • Pallis CA, Louis S, Morgan RL (1961) Radiation myelopathy. Brain 84: 460–479

    PubMed  CAS  Google Scholar 

  • Parker RG, Berry HC, Gerdes AJ, Soronen MD, Shaw CM (1976) Fast neutron beam radiotherapy of glioblastoma multiforme. AJR 127: 331–335

    PubMed  CAS  Google Scholar 

  • Pezner RD, Archambeau JO (1981) Brain tolerance unit: a method to estimate risk of radiation brain injury for various dose schedules. Int J Radiat Oncol Biol Phys 7: 397–402

    PubMed  CAS  Google Scholar 

  • Phillips TL, Buschke F (1969) Radiation tolerance of the thoracic spinal cord. AJR 105: 659–664

    CAS  Google Scholar 

  • Plotnikova ED, Levitman MK, Shaposhnikova VV, Koshevoj JV, Eidus LK (1988) Protection of micro vasculature in rat brain against late radiation injury by gammaphos. Int J Radiat Oncol Biol Phys 15: 1197–1201

    PubMed  CAS  Google Scholar 

  • Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature 303: 390–396

    PubMed  CAS  Google Scholar 

  • Remler M, Marcussen W (1981) The time course of early delayed blood-brain barrier changes in individual cats after ionizing radiation. Exp Neurol 73: 310–314

    PubMed  CAS  Google Scholar 

  • Remler MP, Marcussen WH, Tiller-Borsich J (1986) The late effects of radiation on the blood brain barrier. Int J Radiat Oncol Biol Phys 12: 1965–1969

    PubMed  CAS  Google Scholar 

  • Schultheiss TE, Orton CG, Peck RA (1983) Models in radiotherapy: volume effects. Med Phys 10: 410–415

    PubMed  CAS  Google Scholar 

  • Schultze B, Korr H (1981) Cell kinetic studies of different cell types in the developing and adult brain of the rat and the mouse: a review. Cell Tissue Kinet 14: 309–325

    PubMed  CAS  Google Scholar 

  • Shaw CM, Sumi SM, Alvord EC Jr, Gerdes AJ, Spence A, Parker RG (1978) Fast-neutron irradiation of glioblastoma multiforme. J Neurosurg 49: 1–12

    PubMed  CAS  Google Scholar 

  • Sheline GE, Wara WM, Smith V (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6: 1215–1228

    PubMed  CAS  Google Scholar 

  • Spence AM, Krohn KA, Edmondson SW, Steele JE, Rasey JS (1986) Radioprotection in rat spinal cord with WR-2721 following cerebral lateral intraventricular injection. Int J Radiat Oncol Biol Phys 12: 1479–1482

    PubMed  CAS  Google Scholar 

  • Stephens LC, Hussey DH, Raulston GL, Jardine JH, Gray KN, Almond PR (1983) Late effects of 50 MeVd-Be neutron and cobalt-60 irradiation of rhesus monkey cervical spinal cord. Int J Radiat Oncol Biol Phys 9: 859–864

    PubMed  CAS  Google Scholar 

  • Storm AJ, van der Kogel AJ, Nooter K (1985) Effect of x-irradiation on the pharmacokinetics of methotrexate in rats: alteration of the blood-brain barrier. Eur J Cancer Clin Oncol 21: 759–764

    PubMed  CAS  Google Scholar 

  • Thames HD, Hendry JH (1987) Fractionation in radiotherapy. Taylor & Francis, London

    Google Scholar 

  • Thames HD, Ang KK, Stewart FA, van der Schueren E (1988) Does incomplete repair explain the apparent failure of the basic LQ model to predict spinal cord and kidney responses to low doses per fraction? Int J Radiat Biol 54: 13–19

    PubMed  CAS  Google Scholar 

  • Tiller-Borcich JK, Fike JR, Phillips TL, Davis RL (1987) Pathology of delayed radiation brain damage: an experimental canine model. Radiat Res 110: 161–172

    PubMed  CAS  Google Scholar 

  • Travis EL, Parkins CS, Holmes SJ, Down JD (1982) Effect of misonidazole on radiation injury to mouse spinal cord. Br J Cancer 45: 469–473

    PubMed  CAS  Google Scholar 

  • Turesson I, Notter G (1986) Dose-response and dose- Iatency relationships for human skin after various fractionation schedules. Br J Cancer 53 [Suppl VII]: 67–72

    Google Scholar 

  • van der Kogel AJ (1977a) Radiation tolerance of the rat spinal cord: time-dose relationships. Radiology 122: 505–509

    PubMed  Google Scholar 

  • van der Kogel AJ (1977b) Radiation-induced nerve root degeneration and hypertrophic neuropathy in the lumbosacral spinal cord of rats: the relation with changes in aging rats. Acta Neuropathol (Berl) 39: 139–145

    Google Scholar 

  • van der Kogel AJ (1979) Late effects of radiation on the spinal cord: dose-effect relationships and pathogenesis. Publication of the Radiobiological Institute TNO, Rijswijk, The Netherlands

    Google Scholar 

  • van der Kogel AJ (1980) Mechanisms of late radiation injury in the spinal cord. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven, New York, pp 461–470

    Google Scholar 

  • van der Kogel AJ (1983) The cellular basis of radiation induced damage in the CNS. In: Potten CS, Hendry JH (eds) Cytotoxic insult to tissues: effects on cell lineages. Churchill-Livingstone, Edinburgh, pp 329–352

    Google Scholar 

  • van der Kogel AJ (1985) Chronic effects of neutrons and charged particles on spinal cord, lung, and rectum. Radiat Res 104: S208–S216

    Google Scholar 

  • van der Kogel AJ (1986) Radiation-induced damage in the central nervous system: an interpretation of target cell responses. Br J Cancer 53: [Suppl VII]: 207–217

    Google Scholar 

  • van der Kogel AJ (1987) Effect of volume and localization on rat spinal cord tolerance. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Radiation research (Proceedings of the 8th International Congress of Radiation Research), vol 1. Taylor & Francis, London, p 352

    Google Scholar 

  • van der Kogel AJ, Barendsen GW (1974) Late effects of spinal cord irradiation with 300 KV x-rays and 15 MeV neutrons. Br J Radiol 47: 393–398

    PubMed  Google Scholar 

  • van der Kogel AJ, Sissingh HA (1983) Effect of misonida- zole on the tolerance of the rat spinal cord to daily and multiple fractions per day of x-rays. Br J Radiol 56: 121–125

    PubMed  Google Scholar 

  • van der Kogel AJ, Sissingh HA (1985) Effects of intrathecal methotrexate and cytosine arabinoside on the radiation tolerance of the rat spinal cord. Radiother Oncol 4: 239–251

    PubMed  Google Scholar 

  • van der Kogel AJ, Sissingh HA, Zoetelief J (1982) Effect of x-rays and neutrons on repair and regeneration in the rat spinal cord. Int J Radiat Oncol Biol Phys 8: 2095–2097

    PubMed  Google Scholar 

  • van der Schueren E, Landuyt W, Ang KK, van der Kogel AJ (1988) From 2 Gy to 1 Gy per fraction: sparing effect in rat spinal cord? Int J Radiat Oncol Biol Phys 14: 297–300

    PubMed  Google Scholar 

  • Vogel FS, Pickering JE (1956) Demyelinization induced in the brains of monkeys by means of fast neutrons. J Exp Med 104: 435–449

    PubMed  Google Scholar 

  • Wara WM, Phillips TL, Sheline GE, Schwade JG (1975) Radiation tolerance of the spinal cord. Cancer 35: 1558–1562

    PubMed  CAS  Google Scholar 

  • White A, Hornsey S (1978) Radiation damage to the rat spinal cord: the effect of single and fractionated doses of x-rays. Br J Radiol 51: 515–523

    PubMed  CAS  Google Scholar 

  • White A, Hornsey S (1980) Time dependent repair of radiation damage in the rat spinal cord after x-rays and neutrons. Eur J Cancer 16: 957–962

    PubMed  CAS  Google Scholar 

  • Wigg DR, Koschel K, Hodgson GS (1981) Tolerance of the mature human central nervous system to photon irradiation. Br J Radiol 54: 787–798

    PubMed  CAS  Google Scholar 

  • Wigg DR, Murray RML, Koschel K (1982) Tolerance of the central nervous system to photon irradiation. Endocrine complications. Acta Radiol [Oncol] 21: 49–60

    CAS  Google Scholar 

  • Withers HR, Mason K, Tang Q (1987) Radiation myelopathy. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Radiation research (Proceedings of the 8th International Congress of Radiation Research), vol 1. Taylor & Francis, London, p 236

    Google Scholar 

  • Withers HR, Taylor JMG, Maciejewski B (1988) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14: 751–760

    PubMed  CAS  Google Scholar 

  • Yaes RJ, Kalend A (1988) Local stem cell depletion model for radiation myelitis. Int J Radiat Oncol Biol Phys 14: 1247–1259

    PubMed  CAS  Google Scholar 

  • Yoshii Y, Phillips TL (1982) Late vascular effects of whole brain x-irradiation in the mouse. Acta Neurochirur (Wien) 64: 87–102

    CAS  Google Scholar 

  • Zeman W (1966) Oxygen effect and selectivity of radiolesions in the mammalian neuraxis. Acta Radiol [Ther] 5: 204–216

    CAS  Google Scholar 

  • Zeman W, Carsten A, Biondo S (1964) Cytochemistry of delayed radionecrosis of the murine spinal cord. In: Haley TJ, Snider RS (eds) Response of the nervous system to ionizing radiation. Academic, New York, pp 105–126

    Google Scholar 

  • Zook BC, Bradley EW, Casarett GW, Rogers CC (1980) Pathologic findings in canine brain irradiated with fractionated fast neutrons or photons. Radiat Res 84: 562–578

    PubMed  CAS  Google Scholar 

  • Zook BC, Bradley EW, Casarett GW, Fisher MP, Rogers CC (1981) The effects of fractionated doses of fast neutrons or photons on the canine cervical spinal cord. Radiat Res 88: 165–179

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Kogel, A.J. (1991). The Nervous System: Radiobiology and Experimental Pathology. In: Scherer, E., Streffer, C., Trott, KR. (eds) Radiopathology of Organs and Tissues. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83416-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83416-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83418-9

  • Online ISBN: 978-3-642-83416-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics