Skip to main content

Analogs of Biological Tissues for Mechanoelectrical Transduction: Tactile Sensors and Muscle-Like Actuators

  • Conference paper
Sensors and Sensory Systems for Advanced Robots

Part of the book series: NATO ASI Series ((NATO ASI F,volume 43))

Abstract

In this article the authors report their current attempts toward the development of new “skin-like” tactile sensors and “muscle-like” linear actuators potentially useful in the design of dexterous end effectors. The underlying design philosophy resides on mimicking electromechanical conversion properties of biological tissue making use of synthetic piezoelectric polymers or polyelectrolyte gels. A brief introduction is also given to the physical mechanisms which govern mechanical to electrical transduction in polymeric systems. It is a belief of the authors that substantial progress in the development of sophisticated tactile sensors and artificial muscles can be obtained by resorting to a “molecular bionics” approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sessler GM (ed)(1980) Electrects. Springer Verlag, Berlin.

    Google Scholar 

  2. Guzelsu N (1982) Mechanoelectrical effects in biological systems. In “Electronic conduction and mechanoelectrical transduction in biological materials”, Lipinski B (ed). Marcel Dekker Inc., New York.

    Google Scholar 

  3. Galletti PM, Broadhurst MG, De Rossi D (Guest eds)(1984) Proceedings of the 1st Int. Symp. on Piezoelectricity in Biomaterials and Biomedical Devices, Ferroelectrics, 60 (N. 1/2/3/4).

    Google Scholar 

  4. Various authors (1982), Outlook for science and technology-the next five years, pp. 412–416. W.H. Freeman and Company, San Francisco.

    Google Scholar 

  5. Mandelkern L (1964) Contractile processes in fibrous macromolecules, Ann. Rev. Phys. Chem., 15: 421–448.

    Article  Google Scholar 

  6. Fukada E (1974) Piezoelectric properties of organic polymers, Ann. New York Acad, of Sci., 38: 7–27.

    Article  Google Scholar 

  7. Katchalsky A, Curran PF (1974) Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge.

    Google Scholar 

  8. Oosawa F (1971) Polyelectrolytes, Marcel Dekker Inc., New York.

    Google Scholar 

  9. Cady WG (1966) Piezoelectricity. McGraw Hill, New York.

    Google Scholar 

  10. Nye JF (1957) Physical properties of crystals. Oxford University Press, Oxford.

    MATH  Google Scholar 

  11. Hayakawa R, Wada Y (1973) Piezoelectricity and related properties of polymer films. Advances in Polymer Science, XI: 1–55, Springer Verlag, Berlin.

    Google Scholar 

  12. Fukada E (1974) Piezoelectric properties of biological macromolecules. Advan. in Biophys., 6: 121–155.

    Google Scholar 

  13. Grodzinsky AJ (1983) Electromechanical and physicochemical properties of connective tissue. CRC Critical Reviews in Biomedical Engineering, 9(2): 133–199.

    Google Scholar 

  14. Basset CAL (1971) Biophysical principals affecting bone structure. In “The biochemistry and physiology of bone” Vol. III, Bourne GH (ed), Academic Press, New York.

    Google Scholar 

  15. Kuhn W, Hargitay B, Katchalsky A, Eisemberg H (1950) Reversible dilatation and contraction by changing the state of ionization of high-polymer networks. Nature, 165: 514–516.

    Article  Google Scholar 

  16. Katchalsky A, Lifson S, Michaeli T, Zwick H (1960) Elementary mechanochemical processes. In “Size and shape changes of contractile polymers”, Wassermann A (ed), Pergamon Press, New York.

    Google Scholar 

  17. Flory PJ (1956) Role of crystalization in polymers and proteins. Science, 124: 53–60.

    Article  Google Scholar 

  18. Tanaka T, Nishio I, Shao-Tang S, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science, 218: 467–470.

    Article  Google Scholar 

  19. Grodzinsky AJ, Shoenfeld NA (1977) Tensile forces induced in collagen by means of lectromechanochemical transductive coupling. Polymer, 18: 435–443.

    Article  Google Scholar 

  20. Shamos MH, Lavine LS (1967) Piezoelectricity as a fundamental property of biological tissues. Nature, 213: 2677–2679.

    Article  Google Scholar 

  21. Athenstaedt H, Claussen H, Shaper D (1982) Epidermis of human skin — a piezoelectric and pyroelectric sensor layer. Science, 216: 1018–1021.

    Article  Google Scholar 

  22. De Rossi D, Domenici C, Pastacaldi P (1986) Piezoelectric properties of dry human skin. IEEE Trans, on Electr. Insul., EI-21: 511–517.

    Article  Google Scholar 

  23. De Rossi D, Domenici C, Pastacaldi P (1986) Human skin electromechanics: on the origin of stress generated potentials (Abstr.). Vth Meeting of the European Society of Biomechanics, Berlin.

    Google Scholar 

  24. Dario P, De Rossi D (1985) Tactile sensors and the gripping challenge. IEEE Spectrum, 22(8): 46–52.

    Google Scholar 

  25. Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Winston/Wiley, Washington.

    MATH  Google Scholar 

  26. Dario P, De Rossi D, Domenici C, Francesconi R (1984) Ferroelectric polymer tactile sensors with anthropomorphic features. Proc. 1st IEEE Int. Conf. on Robotics, pp. 332–340, IEEE Computer Society Press, Atlanta.

    Google Scholar 

  27. Volkenstein MV (1983) Biophysics, pp. 423–431. MIR Publisher, Moscow.

    Google Scholar 

  28. Brown CH (1975) Structural materials in animals, pp. 76–77. A Halsted Press Book, J Wiley & Sons, New York.

    Google Scholar 

  29. De Rossi D, Parrini P, Chiarelli P, Buzzigoli G (1985) Electrically induced contractile phenomena in charged polymer networks: preliminary study on the feasibility of muscle-like structures. Trans. Am. Soc. Artif. Intern. Organs, XXXI: 60–65.

    Google Scholar 

  30. De Rossi D, Chiarelli P, Buzzigoli G, Domenici C, Lazzeri L (1986) Contractile behavior of electrically activated mechanochemical polymer actuators. Trans. Am. Soc. Artif. Intern. Organs, XXXII: 157–162.

    Google Scholar 

  31. Sandblom J (1972) Liquid membranes as electrodes and biological models. In “Membranes” Vol. 1, Eisenman G (ed), Marcel Dekker Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Rossi, D., Domenici, C., Chiarelli, P. (1988). Analogs of Biological Tissues for Mechanoelectrical Transduction: Tactile Sensors and Muscle-Like Actuators. In: Dario, P. (eds) Sensors and Sensory Systems for Advanced Robots. NATO ASI Series, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83410-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83410-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83412-7

  • Online ISBN: 978-3-642-83410-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics