Skip to main content

Quadtrees and Pyramids: Hierarchical Representation of Images

  • Conference paper
Pictorial Data Analysis

Part of the book series: NATO ASI Series ((NATO ASI F,volume 4))

Abstract

This paper reviews methods of variable-resolution representation or approximation of digital images based on the use of trees of degree 4 (“quadtrees”). It also discusses the multi-resolution representation of an image by an exponentially tapering “pyramid” of arrays, each half the size of the preceding. Basic properties of these representations, and their uses in image segmentation and property measurement, are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Pavlidis, Structural Pattern Recognition, Springer, New York, 1977.

    MATH  Google Scholar 

  2. A. Klinger, Data structures and pattern recognition, Proc. 1st Intl. Joint Conf. on Pattern Recognition, 1973, 497–498.

    Google Scholar 

  3. A Klinger and C. R. Dyer, Experiments in picture representation using regular decomposition, Computer Graphics Image Processing 5, 1976, 68–105.

    Article  Google Scholar 

  4. C. R. Dyer, Space efficiency of region representation by quadtrees, Tech. Rept. KSL 46, University of Illinois, Chicago, IL, 1980.

    Google Scholar 

  5. L. Jones and S. S. Iyengar, Representation of a region as a forest of quad trees, Proc. IEEE Conf. Pattern Recognition Image Processing, 1981, 57–59.

    Google Scholar 

  6. M. Li, W. I. Grosky, and R. Jain, Normalized quadtrees with respect to translations, Proc. IEEE Conf. Pattern Recognition Image Processing, 1981, 60–62.

    Google Scholar 

  7. H. Samet, Region representation: quadtrees from binary arrays, Computer Graphics Image Processing 13, 1980, 88–93.

    Article  Google Scholar 

  8. J. Burt, Hierarchically derived piecewise polynomial approximations to waveforms and images, Tech. Rept. 838, University of Maryland, College Park, MD, 1979.

    Google Scholar 

  9. H. Samet, An algorithm for converting rasters to quadtrees, IEEE Trans. Pattern Analysis Machine Intelligence 3, 1981, 93–95.

    Article  Google Scholar 

  10. H. Samet, Algorithms for the conversion of quadtrees to rasters, Tech. Rept. 979, University of Maryland, College Park, MD, 1980.

    Google Scholar 

  11. H. Samet, Region representation: quadtrees from boundary codes, Comm. ACM 23, 1980, 163–170.

    Article  MATH  Google Scholar 

  12. C. R. Dyer, A. Rosenfeld, and E. Samet, Region representation: boundary codes from quadtrees, Comm. ACM 23, 1980, 171–179.

    Article  MATH  Google Scholar 

  13. H. Samet, A distance transform for images represented by quadtrees, IEEE Trans. Pattern Analysis Machine Intelligence 4, 1982, 298–303.

    Article  Google Scholar 

  14. M. Shneier, Path-length distances for quadtrees, Information Sci ences 23, 1981, 49–67.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Samet, A quadtree medial axis transformation, Comm. ACM, to appear.

    Google Scholar 

  16. M. Shneier, Calculations of geometric properties using quadtrees, Computer Graphics Image Processing 16, 1981, 296–302.

    Article  Google Scholar 

  17. H. Samet, Computing perimeters of images represented by quadtrees, IEEE Trans. Pattern Analysis Machine Intelligence 3, 1981, 683–687.

    Article  Google Scholar 

  18. K. Samet, Connected component labelling using quadtrees, J. ACM 28, 1981, 487–501.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. R. Dyer, Computing the Euler number of an image from its quadtree, Computer Graphics Image Processing 13, 1980, 270–276.

    Article  Google Scholar 

  20. N. Alexandridis and A. Klinger, Picture decomposition, tree datastructures, and identifying directional symmetries as node combinations, Computer Graphics Image Processing 8, 1978, 43–77.

    Article  Google Scholar 

  21. H. Samet, Neighbor finding techniques for images represented by quadtrees, Computer Graphics Image Processing 18, 1982, 37–57.

    Article  MATH  Google Scholar 

  22. G. M. Hunter and K. Steiglitz, Operations on images using quad trees, IEEE Trans. Pattern Analysis Machine Intelligence 1, 1979, 145–153.

    Article  Google Scholar 

  23. G. M. Hunter and K. Steiglitz, Linear transformation of pictures represented by quad trees, Computer Graphics Image Processing 10, 1979, 289–296.

    Article  Google Scholar 

  24. N. Ahuja, Approaches to recursive image decomposition, Proc. IEEE Conf. Pattern Recognition Image Processing, 1981, 75–80.

    Google Scholar 

  25. P. J. Burt, Tree and pyramid structures for coding hexagonally sampled binary images, Computer Graphics Image Processing 14, 1980, 271–280.

    Article  Google Scholar 

  26. D. R. Reddy and S. M. Rubin, Representation of three-dimensional objects, Tech. Rept. CS-78-113, Carnegie-Mellon University, Pittsburgh, PA, 1978.

    Google Scholar 

  27. C. L. Jackins and S. L. Tanimoto, Oct-trees and their use in representing three-dimensional objects, Computer Graphics Image Pro cessing 14, 1980, 249–270.

    Article  Google Scholar 

  28. D. J. R. Meagher, Octree encoding, a new technique for the representation, manipulation, and display of arbitrary 3-d objects by computer, Tech. Rept. 80-111, Rensselaer Polytechnic Institute, Troy, NY, 1980.

    Google Scholar 

  29. L. J. Doctor and J. G. Torborg, Display techniques for octreeencoded objects, Computer Graphics Applications 1(3), 1981, 29–33.

    Article  Google Scholar 

  30. M. M. Yau and S. N. Srihari, Recursive generation of hierarchical data structures for multidimensional digital images, Proc. IEEE Conf. Pattern Recognition Image Processing, 1981, 42–44.

    Google Scholar 

  31. K. R. Sloan Jr., Dynamically quantized pyramids, Proc. 7th Intl. Conf. Artificial Intelligence, 1981, 714–736.

    Google Scholar 

  32. J. O.Rourke, Dynamically quantized spaces for focusing the Hough transform, Proc. 7th Intl. Joint Conf. Artificial Intelligence, 1981, 737–739.

    Google Scholar 

  33. P. J. Burt, Fast hierarchical correlations with Gaussian-like kernels, Proc. 5th Intl. Conf. Pattern Recognition, 1980, 828–830.

    Google Scholar 

  34. E. H. Adelson and P. J. Burt, Image data compression with the Laplacian pyramid, Proc. IEEE Conf. Pattern Recognition Image Processing, 1981, 218–223.

    Google Scholar 

  35. L. Uhr, Layered “recognition cone” networks that preprocess, classify, and describe, IEEE Trans. Computers 21, 1972, 758–768.

    Article  MATH  Google Scholar 

  36. M. D. Kelly, Edge detection in pictures by computer using planning, Machine Intelligence 6, 1971, 397–409.

    Google Scholar 

  37. S. Tanimoto and T. Pavlidis, A hierarchical data structure for picture processing, Computer Graphics Image Processing 4, 1975, 104–119.

    Article  Google Scholar 

  38. S. Tanimoto, Pictorial feature distortion in a pyramid, Computer Graphics Image Processing 5, 1976, 333–352.

    Article  Google Scholar 

  39. A. R. Hanson and E. M. Riseman, Segmentation of natural scenes, in A. R. Hanson and E. M. Riseman, eds., Computer Vision Systems, Academic Press, NY, 1978, 129–163.

    Google Scholar 

  40. S. L. Tanimoto, Regular hierarchical image and processing structures. in machine vision, in A. R. Hanson and E. M. Riseman, eds., Computer Vision Systems, Academic Press, NY, 1978, 165–174.

    Google Scholar 

  41. M. D. Levine, A knowledge-based computer vision system, in A. R. Hanson and E. M. Riseman, eds., Computer Vision Systems, Academic Press, NY, 1978, 335–352.

    Google Scholar 

  42. S. Tanimoto and A. Klinger, eds., Structured Computer Vision, Academic Press, New York, 1980. See especially the papers by L. Uhr, Psychological motivation and underlying concepts, 1-30; S. L. Tanimoto, Image data structures, 31-55; M. D. Levine, Region analysis using a pyramid data structure, 57-1*00; A. R. Hanson and E. M. Riseman, Processing cones: a computational structure for image analysis, 102-131; R. Bajcsy and D. A. Rosenthal, Visual and conceptual focus of attention, 133-149.

    Google Scholar 

  43. A. Rosenfeld and M. Thurston, Edge and curve detection for visual scene analysis, IEEE Trans. Computers 20, 1971, 562–569.

    Article  Google Scholar 

  44. D. Marr and E. Hildreth, Theory of edge detection, Proc. Royal Soc. B207, 1930, 137–217.

    Google Scholar 

  45. M. Shneier, Using pyramids to define local thresholds for blob detection, TR-303, University of Maryland, College Park, MD, 1979.

    Google Scholar 

  46. M. Shneier, Extracting linear features from images using pyramids, TR-855, University of Maryland, College Park, MD, 1980.

    Google Scholar 

  47. S. Kasif and A. Rosenfeld, Pyramid linking is a special case of ISODATA, TR-1096, University of Maryland, College Park, MD, 1981.

    Google Scholar 

  48. P. Burt, T. K. Kong, and A. Rosenfeld, Segmentation and estimation of image region properties through cooperative hierarchical computation, IEEE Trans. Systems, Man, Cybernetics 11, 1931, 802–809.

    Article  Google Scholar 

  49. T. H. Kong, K. A. Narayanan, S. Peleg, A. Rosenfeld, and T. Silberberg,, Image smoothing and segmentation by multiresolution pixel linking: further experiments and extensions, IEEE Trans. Systems, Man, Cybernetics 12, 1982, in press.

    Google Scholar 

  50. K. J. Antonisse, Image segmentation in pyramids, Computer Graphics Image Processing 19, 1982, in press.

    Google Scholar 

  51. T. H. Eong and A. Rosenfeld, Unforced image partitioning by weighted pyramid linking, TR-1137, University of Maryland, College Park, MD, 1982.

    Google Scholar 

  52. M. Pietikainen, A. Rosenfeld, and I. Walter, Split-and-link algorithms for image segmentation, Pattern Recognition 15, 1982, in press.

    Google Scholar 

  53. M. Shneier, Two hierarchical linear feature representations: edge pyramids and edge quadtrees, Computer Graphics Image Processing17, 1981, 211–224.

    Article  Google Scholar 

  54. T. H. Hong, M. Shneier, and A. Rosenfeld, Border extraction using linked edge pyramids, IEEE Trans. Systems, Man, Cybernetics 12, 1982, in press.

    Google Scholar 

  55. T. K. Hong and M. Shneier, Extracting compact objects using linked pyramids, TR-1123, University of Maryland, College Park, MD, 1931.

    Google Scholar 

  56. T. H. Hong and M. Shneier, in preparations.

    Google Scholar 

  57. D. Ballard, Strip trees: a hierarchical representation for curves, Comm. ACM 24, 1981, 310–321.

    Article  Google Scholar 

  58. K. A. Narayanan, D. P. O.Leary, and A. Rosenfeld, Multiresolution relaxation, Pattern Recognition 15, 1982, in press.

    Google Scholar 

  59. P. C. Chen and T. Pavlidis, Segmentation by texture using a cooccurrence matrix and a split-and-merge algorithm, Computer Gra phics Image Processing 10, 1979, 172–182.

    Article  Google Scholar 

  60. M. Pietikainen and A. Rosenfeld, Image segmentation by texture using pyramid node linking, IEEE Trans. Systems, Man, Cybernetics11, 1981, 822–825.

    Article  Google Scholar 

  61. M. Pietikainen and A. Rosenfeld, Gray level pyramid linking as an aid in texture analysis, IEEE Trans. Systems, Man, Cybernetics 12, 1982, in press.

    Google Scholar 

  62. D. D. Garber, Computational models for texture analysis and texture synthesis, IPI-TR 1000, University of Southern California, Los Angeles, CA, 1981.

    Google Scholar 

  63. K. A. Narayanan and A. Rosenfeld, Approximation of waveforms and contours by one-dimensional pyramid linking, Pattern Recognition 15, 1982, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosenfeld, A. (1983). Quadtrees and Pyramids: Hierarchical Representation of Images. In: Haralick, R.M. (eds) Pictorial Data Analysis. NATO ASI Series, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82017-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82017-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82019-9

  • Online ISBN: 978-3-642-82017-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics