Skip to main content

Inhibition of DNA Methylation by 5-Azacytidine

  • Chapter
Modified Nucleosides and Cancer

Abstract

The process by which eukaryotic cells control the expression of their genes constitutes one of the key unanswered questions in biology. While it is clear that post-tran-scriptional controls are involved in the fine tuning of gene expression it also seems clear that the primary level of control is exhibited at the transcriptional level. Considerable evidence accumulated over the past few years strongly suggests that the methylation of specific cytosine residues within and around genes may exert such transcriptional control (Razin and Riggs 1980).

This work was supported by grants GM25739 and T32-CA09320 from the National Institutes of Health

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bird AP (1978) Use of restriction enzymes to study eukaryotie DNA methylation: The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J Mol Biol 118: 49–60

    Article  PubMed  CAS  Google Scholar 

  • Cohen JC (1980) Methylation of milk-borne and genetically transmitted mouse mammary tumor virus proviral DNA. Cell 19: 653–662

    Article  PubMed  CAS  Google Scholar 

  • Compere SJ, Palmiter RD (1981) DNA methylation controls the inducibihty of the mouse metallothionein-1 gene in lymphoid cells. Cell 25: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Constantinides PG, Jones PA, Gevers W (1977) Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature 267:364–366

    Article  PubMed  CAS  Google Scholar 

  • Constantinides PG, Taylor SM, Jones PA (1978) Phenotypic conversion of cultured mouse embryo cells by aza pyrimidine nucleosides. Dev Biol 66: 57–71

    Article  PubMed  CAS  Google Scholar 

  • Desrosiers RC, Mulder C, Fleckenstein B (1979) Methylation of herpesvirus samiri DNA in lymphoid tumor cell lines. Proc Natl Acad Sci USA 76:3839–3843

    Article  PubMed  CAS  Google Scholar 

  • Dientsman SR, Holtzer H (1975) Myogenesis: A cell lineage interpretation. In: Reinert J, Holtzer H (eds) Results and problems in cell differentiation. Springer, Berlin Heidelberg New York, pp 1–25

    Google Scholar 

  • Doskocil J, Sorm F (1962) Distribution of 5-methylcytosine in pyrimidine sequences of deoxyribonucleic acids. Biochim Biophys Acta 55:953–959

    Article  PubMed  CAS  Google Scholar 

  • Groudine M, Weintraub H (1981) Activation of globin genes during chicken development. Cell 24:393–401

    Article  PubMed  CAS  Google Scholar 

  • Groudine M, Eisenman R, Weintraub H (1981) Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature 292: 311–317

    Article  PubMed  CAS  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Taylor SM (1981) Hemimethylated duplex DNAs prepared from 5-azacytidine treated cells, Nucleic Acids Res 9:2933–2947

    Article  PubMed  CAS  Google Scholar 

  • Landolph JR, Jones PA (1982) Mutagenicity of 5-azacytidine and related nucleosides in C3H/10T1/2CL8 and V79 cells. Cancer Res 42:817–823

    PubMed  CAS  Google Scholar 

  • Mandel JL, Chambon P (1979) DNA methylation: Organ specific variations in the methylation pattern within and around ovalbumin and other chicken genes. Nucleic Acids Res 7:2081–2103

    Article  PubMed  CAS  Google Scholar 

  • McGhee JD, Ginder GD (1979) Specific DNA methylation sites in the vicinity of the chicken ß-globin genes. Nature 280:419–420

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn N, Herzog D, Christman JK (1981) 5-Azacytidine (5-aza-CR) as an inducer of differentiation in human leukemia cells (HL-60). Proc Am Assoc Cancer Res 22: 190

    Google Scholar 

  • Mohandas T, Sparkes RS, Shapiro LJ (1981) Reactivation of an inactive human X chromosome: Evidence for X inactivation by DNA methylation. Science 211: 393–396

    Article  PubMed  CAS  Google Scholar 

  • Pollack Y, Stein R, Razin A, Cedar H (1980) Methylation of foreign DNA sequences in eukaryotic cells. Proc Natl Acad Sci USA 77:6463–6467

    Article  PubMed  CAS  Google Scholar 

  • Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610

    Article  PubMed  CAS  Google Scholar 

  • Riggs AD (1975) X-inactivation, differentiation and DNA methylation. Cytogenet Cell Genet 14:9–25

    Article  PubMed  CAS  Google Scholar 

  • Sutter D, Doerfler W (1980) Methylation of integrated adenovirus type 12 DNA sequences in transformed cells is inversely correlated with viral gene expression. Proc Natl Acad Sci USA 77:253–256

    Article  PubMed  CAS  Google Scholar 

  • Taylor SM, Jones PA (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17:771–779

    Article  PubMed  CAS  Google Scholar 

  • Taylor SM, Jones PA (1982) Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine. J Cell Physiol 111: 187–194

    Article  PubMed  CAS  Google Scholar 

  • van der Ploeg LHT, Flavell RA (1980) DNA methylation in the human γδß-globin locus in erythroid and nonerythroid tissue. Cell 19:947–958

    Article  PubMed  Google Scholar 

  • Waalwijk C, Flavell RA (1978) DNA methylation at a CCGG sequence in the large intron of the rabbit ß-globin gene: tissue specific variations. Nucleic Acids Res 5: 4631–4641

    Article  PubMed  CAS  Google Scholar 

  • Wigler M, Levy D, Perucho M (1981) The somatic replication of DNA methylation. Cell 24:3340

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin • Heidelberg

About this chapter

Cite this chapter

Jones, P.A., Taylor, S.M., Wilson, V.L. (1983). Inhibition of DNA Methylation by 5-Azacytidine. In: Nass, G. (eds) Modified Nucleosides and Cancer. Recent Results in Cancer Research/Fortschritte der Krebsforschung/Progrès dans les recherches sur Ie cancer, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81947-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81947-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81949-0

  • Online ISBN: 978-3-642-81947-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics