Skip to main content

Finite Element Elastoplastic and Limit Analysis: Some Consistency Criteria and Their Implications

  • Conference paper
Nonlinear Finite Element Analysis in Structural Mechanics

Summary

The formulation of element elastic-plastic laws is considered in the framework of the displacement approach. The finite element model is regarded as an actually discrete system, composed of a finite number of parts whose individual behaviour is described in terms of generalized stresses and strains. A general procedure for formulating the element laws is proposed, and it is shown that some commonly used formulations of finite element elastic-plastic analysis can be recovered on the basis of particular assumptions. It is pointed out that these formulations may violate some “consistency” requirements, which are discussed in the paper; these violations may explain some of the inaccuracies experienced in computations. A fairly general method for restoring consistency is proposed. The implications of some of the approximations involved are also discussed, with particular reference to the limit analysis problem. Simple examples illustrate the effects of lack of consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nayak, G.C.; Zienkiewicz, O.C.: Elastic-plastic stress analysis. A Generalization for various constitutive relations including strain softening. Int. J. Num. Meth. Engrg., 5, (1972), 113–135.

    Article  MATH  Google Scholar 

  2. Zienkiewicz, O.C.: The finite element method. McGraw-Hill, London, 1977.

    Google Scholar 

  3. Besseling, J.F.: The force method and its application in plasticity problems. Computers and Structures, 8, (1978) 323–330.

    Article  MATH  Google Scholar 

  4. Besseling, J.F.: Finite element method. 53–78, in: Trends in Solid Mechanics, Besseling and van der Heijden edts., Sijthoff & Noordhoff, 1979.

    Google Scholar 

  5. Argyris, J.H.: Continua and discontinua. 11–189, in: Proc. 1st Conf. on Matrix Methods in Structural Mechanics, Dayton, Ohio, AFFDL TR. 66. 80, 1966.

    Google Scholar 

  6. Scharpf, D.W.: A new method of stress calculation in the matrix displacement analysis. Computers and Structures, 8, (1978) 465–477.

    Article  MATH  Google Scholar 

  7. Maier, G.: A matrix structural theory of piecewiselinear plasticity with interacting yield planes. Meccanica, 5 (1970) 54–66.

    Article  MATH  Google Scholar 

  8. Corradi, L.: On compatible finite element models for elastic plastic analysis. Meccanica, 13 (1978) 133–150.

    Article  MATH  Google Scholar 

  9. Corradi, L.: On some “consistent” finite element approximations in non-linear structural analysis. Proc. 5th ALMETA Conference, Palermo, Italy, Oct. 1980.

    Google Scholar 

  10. Corradi, L.; Gioda, G.: On the finite element modelling of elastic-plastic behaviour with reference to geotechnical problems. 1st. Int. Conf. on Numerical Methods for Non-Linear Problems, Swansea, U.K. Sept.1980.

    Google Scholar 

  11. Martin, J.: Plasticity. MIT Press, 1975.

    Google Scholar 

  12. Dang Hung, N.; König, J.A.: A finite element formulation of the shakedown problem using a yield criterion of the mean. Corp. Meth. Appl. Mech. Engrg., 8 (1976) 179–192.

    Article  MATH  Google Scholar 

  13. Hodge, P.G. Jr.: A Consistent finite element model for the two-dimensional continuum. Ingenieur Archiv, 39 (1970) 375–383.

    Article  MATH  Google Scholar 

  14. Cohn, M.Z.; Maier, G. Eds.: Engineering Plasticity by Mathematical Programming. Pergamon Press, New York, 1979.

    Google Scholar 

  15. Dang Hung, N.; Trapletti, M.; Ransart, D.: Bornes quasi inférieures et bornes supérieures de la pression de ruine de coques de révolution par la méthode des éléments finis et par la prograuimiation nonlinéare Int. J. Nonlinear Mech., 13 (1979) 79–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corradi, L., Maier, G. (1981). Finite Element Elastoplastic and Limit Analysis: Some Consistency Criteria and Their Implications. In: Wunderlich, W., Stein, E., Bathe, KJ. (eds) Nonlinear Finite Element Analysis in Structural Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81589-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81589-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81591-1

  • Online ISBN: 978-3-642-81589-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics