Skip to main content

Transgenic Mouse Strategies in Virus Research

  • Chapter
Microinjection and Transgenesis

Abstract

The use of viruses and viral genes for infection and microinjection experiments with mouse embryos has greatly contributed to the development of transgenic technologies. Likewise, these techniques have proved very useful in providing insights into basic aspects of virus research, specially into those related to viral pathogenesis and virus-host interactions. Indeed, an impressive number of studies involving transgenic mice carrying viral sequences have been reported during the past 10 years (nearly 900 records can be retrieved from the Medline databases under the entries transgenic mouse and virus). The following is a summary of the main topics on virus research using transgenic mice, including some illustrative references:

  • Studies on the oncogenic activity of viral proteins (see for review Adams and Cory 1991; Merlino 1994). Oncogenes of the so-called tumor viruses (zur Hausen 1991) have been expressed in mouse tissues from either homologous or heterologous viral control regions, or with the help of eukaryotic promoters. In the latter case, promoters of genes expressed selectively in specific tissues have been preferred. Thus, for instance, the α-A crystallin promoter and the keratin 10 promoters have been used to target transgene expression to lens and skin, respectively (e.g., Griep et al. 1993; Auewarakul et al. 1994). In some cases, two or more viral oncogenes were combined in transgenic mice for studies on oncogene cooperation (e.g., van Lohuizen et al. 1991; see also Berns 1991), as was done previously in studies in vitro. In addition, transgenes containing tissue-specific promoters fused to viral oncogenes (most frequently the SV40 large T-antigen), have been used to assess many aspects of tumorigenesis, apoptosis, and cell cycle control. Recently, male germ cells have been reported to undergo trans-meiotic differentiation in vitro by expression of the SV40 large T-antigen (see Rassoulzadegan et al., Chap. 12, this Vol.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Cory, S (1991) Transgenic models of tumor development. Science 254: 1161–1167

    Article  PubMed  CAS  Google Scholar 

  • Aichele P, Kyburz D, Ohashi PS, Odermatt B, Zinkernagel RM, Hengartner H, Pircher H (1994) Peptide-induced T-cell tolerance to prevent autoimmune diabetes in a transgenic mouse model. Proc Natl Acad Sci USA 91: 444–448

    Article  PubMed  CAS  Google Scholar 

  • Andino R, Silvera-D Suggett SD, Achacoso PL, Miller CJ, Baltimore D, Feinberg MB (1994) Engineering poliovirus as a vaccine vector for the expression of diverse antigens. Science 265: 1448–1451

    Article  PubMed  CAS  Google Scholar 

  • Ashton-Rickardt PG, Bandeira A, Delaney JR, Van-Kaer L, Pircher HP, Zinkernagel RM, Tonegawa S (1994) Evidence for a differential avidity model of T-cell selection in the thymus. Cell 76: 651–663

    Article  PubMed  CAS  Google Scholar 

  • Auewarakul P, Gissmann L, Cid-Arregui A (1994) Targeted expression of the E6 and E7 oncogenes of human papillomavirus type 16 in the epidermis of transgenic mice elicits generalized epidermal hyperplasia involving autocrine factors. Mol Cell Biol 14: 8250–8258

    PubMed  CAS  Google Scholar 

  • Berns A (1991) Tumorigenesis in transgenic mice: identification and characterization of synergizing oncogenes. J Cell Biochem 47: 130–135

    Article  PubMed  CAS  Google Scholar 

  • Blessing M, Jorcano JL, Franke WW (1989) Enhancer elements directing cell-typespecific expression of cytokeratin genes and changes of the epithelial cytoskeleton by transfection of hybrid cytokeratin genes. Embo J 8: 117–126

    PubMed  CAS  Google Scholar 

  • Borrelli E, Heyman R, Hsi M, Evans RM (1988) Targeting of an inducible toxic phenotype in animal cells. Proc Natl Acad Sci USA 85: 7572–7576

    Article  PubMed  CAS  Google Scholar 

  • Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC, Nevins JR (1992) Adenovirus El A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci 89: 4549–4553

    Article  PubMed  CAS  Google Scholar 

  • Chisari FV (1995) Hepatitis B virus transgenic mice: insights into the virus and the disease. Hepatology 22: 1316–1325

    PubMed  CAS  Google Scholar 

  • Chomczinski P, Sacchi N (1987) Single-step method of RNA isolation by acid guani- dinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159

    Google Scholar 

  • Cid A, Auewarakul P, Garcia-Carrancä A, Ovseiovich R, Gaissert H, Gissmann L (1993) Cell-type-specific activity of the human papillomavirus type 18 upstream regulatory region in transgenic mice and its modulation by tetradecanoyl phorbol acetate and glucocorticoids. J Virol 67: 6742–6752

    PubMed  CAS  Google Scholar 

  • Collinge J, Sidle KCL, Meads J, Ironside J, Hill AF (1996) Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383: 685–690

    Article  PubMed  CAS  Google Scholar 

  • Crabb DW, Dixon JE (1987) A method for increasing the sensitivity of chloramphenicol acetyltransferase assays in extracts of transfected cultured cells. Anal Biochem 163: 88–92

    Article  PubMed  CAS  Google Scholar 

  • Dyson N, Howley PM, Munger K, Harlow E (1989) The human papillomavirus-16 E7 oncoprotein is able to bind the retinoblastoma gene product. Science 243: 811–814

    Article  Google Scholar 

  • Gibson SJ, Pollak JM (1990) Principle and applications of complementary RNA probes, p84–91. In: Pollak JM, McGee JOD (ed) In situ hybridization, principles and practice. Oxford University Press, Oxford

    Google Scholar 

  • Griep AE, Herber R, Jeon S, Lohse JK, Dubielzig RR, Lambert PF (1993) Tumorigenicity by human papillomavirus type 16 E6 and E7 in transgenic mice correlates with alterations in epithelial cell growth and differentiation. J Virol 67: 1373–1384

    PubMed  CAS  Google Scholar 

  • Hogan B, Beddington R, Costantini F, Lacy E (1994) Manipulating the mouse embryo, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Jain VK, Magrath IT (1991) A chemiluminiscent assay for quantitation of 0galactosidase in the femtogram range: application to quantitation of 13galactosidase in lacZ transfected cells. Anal Biochem 199: 119–124

    Article  PubMed  CAS  Google Scholar 

  • Kitajima I, Shinohara T, Bilakovics J, Brown DA, Xu X, Nerenberg M (1992) Ablation of transplanted HTLV-I Tax-transformed tumors in mice by antisense inhibition of NF-kappa B. Science 258: 1792–1795

    Article  PubMed  CAS  Google Scholar 

  • Klotman PE, Rappaport J, Ray P, Kopp JB, Franks R, Bruggeman LA, Notkins AL (1995) Transgenic models of HIV-1. AIDS 9: 313–324

    PubMed  CAS  Google Scholar 

  • Koike S, Taya C, Kurata T, Abe S, Ise I, Yonekawa H, Nomoto A (1991) Transgenic mice susceptible to poliovirus. Proc Natl Acad Sci USA 88: 951–955

    Article  PubMed  CAS  Google Scholar 

  • MacGregor GR, Nolan GP, Fiering S, Roederer M, Herzenberg LA (1991) Use of E coli lacZ ((3-galactosidase) as a reporter gene. In: Murray EJ (ed) Methods in molecular biology, vol. 7, p 217–135. Humana Press, Inc., Clifton, New Jersey

    Google Scholar 

  • Merlino G (1994) Transgenic mice as models for tumorigenesis. Cancer Invest 12: 203–213

    Article  PubMed  CAS  Google Scholar 

  • Ohashi PS, Oehen S; Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H (1991) Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65: 305–317

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MB, Southern PJ (1993) Trafficking of activated cytotoxic T lymphocytes into the central nervous system: use of a transgenic model. J Neuroimmunol 46: 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1993) Transgenic investigations of prion diseases of humans and animals. In: Flavell RB, Heap RB (eds) Transgenic modification of gemline and somatic cells. Chapman and Hall, London, pp 101–116

    Chapter  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanes JR, Rubenstein JLR, Nicolas JF (1986) Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J 5: 3133–3142

    PubMed  CAS  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM Levine AJ, Howley P (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Sleigh MJ (1986) A nonchromatographic assay for expression of the chloramphenicol acetyltransferase gene in eucaryotic cells. Anal Biochem 156: 251–256

    Article  PubMed  CAS  Google Scholar 

  • van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A (1991) Identification of cooperating oncogenes in E µu-myc transgenic mice by provirus tagging Cell 65: 737–752

    Google Scholar 

  • Wallenfels K, Weil R (1972) 13-Galactosidase. In Boyer P D (ed), The enzymes, vol 7, p 617–663. Academic Press, New York

    Google Scholar 

  • Wassarman PM, DePamphilis ML (1993) Guide to techniques in mouse development. Methods in Enzymology, vol. 225. Academic Press, New York

    Google Scholar 

  • Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248: 76–79

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DG, Nieto MA (1993) Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol 225: 361–373

    Article  PubMed  CAS  Google Scholar 

  • zur Hausen H (1991) Viruses in human cancers. Science 254: 1167–1173

    Article  PubMed  Google Scholar 

  • zur Hausen H, de Villiers EM (1994) Human papillomaviruses. Annu Rev Microbiol 48: 427–447

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cid-Arregui, A. et al. (1998). Transgenic Mouse Strategies in Virus Research. In: Cid-Arregui, A., García-Carrancá, A. (eds) Microinjection and Transgenesis. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80343-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80343-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61895-9

  • Online ISBN: 978-3-642-80343-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics