Skip to main content

Simulation of Heterogeneous Reaction Systems

  • Conference paper
Gas Phase Chemical Reaction Systems

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 61))

Abstract

Bodenstein was the first in the field of catalysis identifying correctly the concentrations of the adsorbed species as controlling element for many heterogeneous reaction systems. While failing to be correct in all details, Bodenstein prepared the ground for many others on their way to a detailed understanding of heterogeneous catalysis kinetics.

In this contribution, the interaction between surface and gas-phase reactions and their coupling by molecular transport is investigated numerically. Two examples are discussed more detailed: heterogeneous ignition and diamond formation by chemical vapour deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. C. Bond, Heterogeneous Catalysis (Clarendon Press, Oxford 1987).

    Google Scholar 

  2. E. Fitzer and W. Fritz, Technische Chemie. Einführung in die Chemische Reaktionstechnik (Springer Berlin 1989).

    Google Scholar 

  3. M. Baerns, Nachr. Chern. Tech. Lab. 43, 245 (1995).

    Article  Google Scholar 

  4. L. D. Pfefferle and W. C. Pfefferle, Catal. Rev.-Sci. Eng. 29, 219 (1987).

    Article  Google Scholar 

  5. J. Warnatz. VDI-Berichte 1205, 1 (1995).

    Google Scholar 

  6. C. M. Friend, Spektrum der Wissenschaften 6, 72 (1993).

    Google Scholar 

  7. R. C. DeVries, Ann. Rev. Mater. 17, 161 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  8. F. G. Celii and J. E. Butler, Annual Rev. Phys. Chem. 42, 643–684 (1991).

    Article  ADS  Google Scholar 

  9. J. Angus, A. Argoitia, R. Gat, Z. Li, M. Sunkara, L. Wang, and Y. Wang, Phil. Trans. R. Soc. Lond. A 342, 195 (1993).

    Article  ADS  Google Scholar 

  10. B. Ruf, F. Behrendt, O. Deutschmann, and J. Warnatz, J. Appl. Phys. 79(8), in press (1996).

    Google Scholar 

  11. B. Ruf, F. Behrendt, O. Deutschmann, and J. Warnatz, Surf. Sci., in press (1996).

    Google Scholar 

  12. J. Warnatz, U. Maas, R. W. Dibble. Combustion (Springer, New York 1996).

    Google Scholar 

  13. D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 21, 11 (1992).

    Article  Google Scholar 

  14. P. Deuflhard, E. Hairer, and J. Zugk, Num. Math. 51, 501 (1987).

    Article  MATH  Google Scholar 

  15. M. E. Coltrin, R. J. Kee, and F. M. Rupley, SURFACE CHEMKIN (Version 4-0): A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface — Gas-Phase Interface, Sandia National Laboratories Report, SAND90-8003B (1990).

    Google Scholar 

  16. J. Warnatz, M. D. Allendorf, R. J. Kee, and M. E. Coltrin. Combust. Flame 96, 393 (1994).

    Article  Google Scholar 

  17. K. Christmann, Introduction to Surface Physical Chemistry (Springer, Berlin 1991).

    Google Scholar 

  18. S. Ljungström, B. Kasemo, A. Rosén, T. Wahnström, and E. Fridell, Surf. Sci. 216, 63 (1989).

    Article  ADS  Google Scholar 

  19. X. Song, W. R. Williams, L. D. Schmidt, and R. Aris, Twenty-Third Symposium (International) on Combustion, p. 1129–1137, The Combustion Institute, Pittsburgh (1990).

    Google Scholar 

  20. W. R. Williams, M. T. Stenzel, X. Song, and L. D. Schmidt, Combust. Flame 84, 277 (1991).

    Article  Google Scholar 

  21. O. Deutschmann, F. Behrendt, and J. Warnatz, Catalysis Today 21, 461 (1994).

    Article  Google Scholar 

  22. H. Ikeda, J. Sato, and F. A. Williams, Surf. Sci. 326, 11 (1995).

    Article  ADS  Google Scholar 

  23. O. Deutschmann, R. Schmidt, and F. Behrendt. Proc. 8th International Symposium on Transport Phenomena in Combustion, San Francisco (1995).

    Google Scholar 

  24. P. Cho and C. K. Law, Combust. Flame 66, 159 (1986).

    Article  Google Scholar 

  25. M. Rinnemo, M. Fassihi, and B. Kasemo. Chem. Phys. Lett. 211, 60–64 (1993).

    Article  ADS  Google Scholar 

  26. F. Behrendt, O. Deutschmann, U. Maas, and J. Warnatz, JVST A 13 (3), 1373 (1995).

    ADS  Google Scholar 

  27. V. P. Zhdanov and B. Kasemo, Surf. Sci. Rep. 20, 11 (1994).

    Article  Google Scholar 

  28. P. K. Bachmann, I. M. Buckley-Golder, J. T. Glass, and M. Kamo (Eds.). Proceedings of the 5th European Conf. on Diam., Diamond-like and Relat Mater., Diamond and Rel. Mat. 4 (1995).

    Google Scholar 

  29. N. Naito, A. Takano, M. Sumia, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett. 66, 1071 (1995).

    Article  ADS  Google Scholar 

  30. K. V. Ravi, Diam. and Rel. Mater. 4, 243 (1995).

    Article  Google Scholar 

  31. M. Murayana, S. Kojima, and K. Uchida, J. Appl. Phys. 69, 7924 (1991).

    Article  ADS  Google Scholar 

  32. S. J. Harris, A. M. Weiner, and T. Perry, Appl. Phys. Lett. 53, 1605 (1988).

    Article  ADS  Google Scholar 

  33. F. G. Celii, P. E. Pehrsson, H.-T. Wang, and J. E. Butler, Appl. Phys. Lett. 52, 2043 (1988).

    Article  ADS  Google Scholar 

  34. S. J. Harris, Appl. Phys. Lett. 56, 2298 (1990).

    Article  ADS  Google Scholar 

  35. S. J. Harris and D. N. Belton, Thin Solid Films 212, 193 (1992).

    Article  ADS  Google Scholar 

  36. S. J. Harris and D. G. Goodwin, J. Phys. Chem. 97, 23 (1993).

    Article  Google Scholar 

  37. D. N. Belton and S. J. Harris, J. Chem. Phys. 96, 2371 (1992).

    Article  ADS  Google Scholar 

  38. S. Skokov, B. Weiner, and M. Frenklach, J. Phys. Chem. 98, 7073 (1994).

    Article  Google Scholar 

  39. P. D’Evelyn, C. J. Chu, R. H. Hauge, and J. C. Margrave, J. Appl. Phys. 71, 1528 (1992).

    Article  ADS  Google Scholar 

  40. B. J. Garrison, E. J. Dawnkaski, D. Srivastava, and D. W. Brenner, Science 255, 835 (1992).

    Article  ADS  Google Scholar 

  41. C. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D’Evely, Appl. Phys. Lett. 61, 1393 (1992).

    Article  ADS  Google Scholar 

  42. E. Kondoh, T. Ohta, T. Mitomo, and K. Ohtsuka, J. Appl. Phys. 73, 3041 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Behrendt, F., Deutschmann, O., Ruf, B., Schmidt, R., Warnatz, J. (1996). Simulation of Heterogeneous Reaction Systems. In: Wolfrum, J., Volpp, HR., Rannacher, R., Warnatz, J. (eds) Gas Phase Chemical Reaction Systems. Springer Series in Chemical Physics, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80299-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80299-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80301-7

  • Online ISBN: 978-3-642-80299-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics