Skip to main content

Virulence Determinants of Mycobacterium tuberculosis

  • Chapter
Tuberculosis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 215))

Abstract

Microbial pathogenicity has been defined as “the biochemical mechanisms whereby microorganisms cause disease” (Smith 1968); however, the actual process is much more dramatic. The interaction between host and pathogen during disease is a dynamic confrontation where the microbe’s strategies for survival meet face to face with the formidable defenses of the immune system. The tactics employed by both participants provide fascinating topics for researchers of many disciplines. Advances, fueled largely by the application of molecular biology, have been made in the biochemistry, immunology, and cell biology of the host-parasite interaction. Among the many new insights is the recognition that bacterial pathogens have evolved sophisticated signal transduction systems controlling the coordinate expression of virulence determinants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abou-Zeid C, Ratliff TL, Wiker HG, Harboe M, Bennedsen J, Rook GAW (1988) Characterization of fibronectin-binding antigens released by Mycobacterium tuberculosis and Mycobacterium bovis BCG. Infect Immun 56: 3046–3051

    PubMed  CAS  Google Scholar 

  • Adams LB, Fukutomi Y, Krahenbuhl JL (1993) Regulation of murine macrophage effector functions by lipoarabinomannan from mycobacterial strains with different degrees of virulence. Infect Immun 61: 4173–4181

    PubMed  CAS  Google Scholar 

  • Affronti LF (1988) Mycobacterial antigens: reagents for tuberculin skin testing and serodiagnosis of tuberculosis. In: Bendinelli M, Friedman H (eds) Mycobacterium tuberculosis. Interactions with the immune system. Plenum, New York, pp 1–37

    Google Scholar 

  • Andersen P, Askgaard D, Ljungqvist L, Bennedsen J, Heron I (1991) Proteins released from Mycobacterium tuberculosis during growth. Infect Immun 59: 1905–1910

    PubMed  CAS  Google Scholar 

  • Andersen AB, Brennan P (1994) Proteins and antigene of Mycobacterium tuberculosis. In: Bloom BR (ed) Tuberculosis pathogenesis, protection, and control. ASM Press, Washington DC, pp 307–332

    Google Scholar 

  • Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis with observations on fusion of lysosomes with phagosomes. J Exp Med 134: 713–740

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JA, Hart PD (1975) Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med 142: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley LW (1993) Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261: 1454–1457

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian V, Wiegeshaus EH, Smith DW (1994) Mycobacterial infection in guinea pigs. Immunobiology 191 (4–5): 395–401

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian V, Pavelka MS Jr, Bardarov SS, Martin J, Weisbrod TR, McAdam RA, Bloom BR, Jacobs WR Jr (1996) Allelic exchange Mycobacterium tuberculosis with long linear recombination substrates. J Bacterial 178: 273–279

    CAS  Google Scholar 

  • Barclay R, Ratledge C (1988) Mycobactins and exochelins of Mycobacterium tuberculosis, M. bovis, M. africanum,and other related species. J Gen Microbial 134: 771–776

    CAS  Google Scholar 

  • Behling CA, Perez RL, Kidd MR, Staton GW Jr, Hunter RL (1993) Induction of pulmonary granulomas, macrophage procoagulant activity and tumor necrosis factor-alpha by trehalose glycolipids. Ann Clin Lab Sci 23: 256–266

    PubMed  CAS  Google Scholar 

  • Berche P, Gaillard JL, Sansonneti RL (1987) Intracellular growth of Listeria monocytogenes as a prerequisite for in vivo induction of T cell-mediated immunity. J Immunol 138: 2266–71

    PubMed  CAS  Google Scholar 

  • Birkness KA, Swisher BL, White EH, Long EG, Ewing EP Jr, Quinn FD (1995) A tissue culture bilayer model to study the passage of Nisseria meningtidis. Infect Immun 63: 402–409

    PubMed  CAS  Google Scholar 

  • Bliska J B, Galan JE, Falkow S (1993) Signal transduction in the mammalian cell during bacterial attachment and entry. Cell 73: 903–920

    Article  PubMed  CAS  Google Scholar 

  • Bloch H (1950) Studies on the virulence of tubercle bacilli: isolation and biological properties of a constituent of virulent organisms. J Exp Med 91: 197–210

    Article  PubMed  CAS  Google Scholar 

  • Bloch H, Noll H (1953) Studies on the virulence of tubercle bacilli. Variations in the virulence effect elicited by Tween 80 and thiosemicarbazone. Br J Exp Pathol 97: 1–16

    CAS  Google Scholar 

  • Bloom BR, Fine PE (1994) The BCG experience: implications for future vaccines against tuberculosis. In: Bloom BR (ed) Tuberculosis: Pathogenesis, protection and control. ASM Press, Washington DC, pp 531–557

    Google Scholar 

  • Brennan PJ (1989) Structure of mycobacteria: recent developments in defining cell wall carbohydrates and proteins. J Infect Dis 11: 5420–5430

    Google Scholar 

  • Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64: 29–63

    Article  PubMed  CAS  Google Scholar 

  • Brown MC, Taffet SM (1995) Lipoarabinomannans derived from different strains of Mycobacterium tuberculosis differentially stimulate the activation of NF-kappaB and KBF1 in murine macrophages. Infect Immun 63: 1960–1968

    PubMed  CAS  Google Scholar 

  • Chan J, Fan X, Hunter SW, Brennan PJ, Bloom BR (1991) Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect Immun 59: 1755–1761

    PubMed  CAS  Google Scholar 

  • Chatterjee D, Bozic CM, McNeil M, Brennan PJ (1991) Structural features of the arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis. J Biol Chem 266: 9652–9660

    PubMed  CAS  Google Scholar 

  • Chatterjee D, Roberts AD, Lowell K, Brennan PJ, Orme IM (1992) Structural basis of capacity of lipoarabinomannan to induce secretion of tumor necrosis factor. Infect Immun 60: 1249–1253

    PubMed  CAS  Google Scholar 

  • Clemens DL, Horwitz MA (1995) Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 181: 257–270

    Article  PubMed  CAS  Google Scholar 

  • Clemens DL, Lee BY, Horwitzz MA (1995) Purification, characterization, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host-pathogen interaction. J Bacteriol 177: 5644–5652

    PubMed  CAS  Google Scholar 

  • Cluff CW, Ziegler HK (1987) Inhibition of macrophage-mediated antigen presentation by hemolysinproducing Listeria monocytogenes [published erratum appears in J Immunol 1988 Apr 1; 140(7): 2477. J Immunol 139: 3808–3812

    CAS  Google Scholar 

  • Cluff CW, Garcia G, Ziegler HK (1990) Intracellular hemolysin-producing Listens monocytogenes strains inhibit macrophage-mediated antigen processing. Infect Immun 58: 3601–12

    PubMed  CAS  Google Scholar 

  • Cohn ML, Kovitz C, Oda U, Middlebrook G (1954) studies on isoniazia and tubercle bacilli: II. The growth requirements, catalase activities, and pathogenic properties of isoniazid-resistant mutants. AM Rev Tuberc 70: 641–664

    PubMed  CAS  Google Scholar 

  • Cooper AM, Roberts AD, Rhoades ER, Callahan JE, Getzy DM, Orme IM (1995) The role of interleukin12 in acquired immunity to Mycobacterium tuberculosis infection. Immunol 84: 423–432

    CAS  Google Scholar 

  • Curcic R, Dhandayuthapani S, Deretic V (1994) Gene expression in mycobacteria: transcriptional fusions based on xyl E and analysis of the promoter region of the response regulator mtrA from Mycobacterium tuberculosis. Mol Microbiol 13: 1057–1064

    Article  PubMed  CAS  Google Scholar 

  • Dannenberg AM Jr (1982) Pathogenesis of pulmonary tuberculosis. Am Rev Infect Dis 125: 25–29

    Google Scholar 

  • Dannenberg AM, Jr, Rook GAW (1994) Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses-dual mechanisms that control bacillary multiplication. In: Bloom BR (ed) Tuberculosis: pathogensis, protection, and control. ASM Press, Washington DC, pp 459–483

    Google Scholar 

  • Deshpande RG, Khan MB, Savariar LS, Windham YZ, Navalkar RG (1993) Superoxide dismutase activity of Mycobacterium avium complex (MAC) strains isolated from AIDS patients. Tubercle Lung Dis 74: 305–309

    Article  CAS  Google Scholar 

  • Dhillon J, Mitchison DA (1994) Effect of vaccines in a murine model of dormant tuberculosis. Tubercle Lung Dis 75(1): 61–64

    Article  CAS  Google Scholar 

  • Duguid JR, Dinauer JC (1989) Library subtraction in vitro cDNA libraries to identify differentially expressed genes in scrapie infection. Nucl Acid Res 18: 2789–2792

    Article  Google Scholar 

  • Falcone V, Bassey E, Jacobs W Jr, Collins F (1995) The ummunogenicity of recombinant Mycobacterium smegmatis bearing BCG genes. Microbiol 141: 1239–1245

    Article  CAS  Google Scholar 

  • Filley EA, Rook GAW (1991) Effect of mycobacteria on sensitivity to the cytotoxic effects of tumor necrosis factor. Infect Immun 59: 2567–2572

    PubMed  CAS  Google Scholar 

  • Filley EA, Bull HA, Dowd PM, Rook GAW (1992) The effect of Mycobacterium tuberculosis on the susceptibility of human cells to the stimulatory and toxic effects of tumor necrosis factor. Immunology 77: 505–509

    PubMed  CAS  Google Scholar 

  • Fishcer LJ, Quinn FD, White EH, King CH (1996) Intracellular growth and cytoxicity of Mycobacterium haemophilum in a human epithelial cell line (Hec-1-B). Infect Immun 64: 269–276

    Google Scholar 

  • Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR (1992) Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 89: 12013–12017

    Article  PubMed  CAS  Google Scholar 

  • Gadea I, Zapardiel J, Ruiz P, Gegundez MI, Estaban J, Soriano F (1993) Cytopathic effect mimicking virus culture due to Mycobacterium tuberculosis. J Clin Microbiol 31: 2517–2518

    PubMed  CAS  Google Scholar 

  • Garbe TR, Barathi J, Barnini S, Zhang Y, Abou-Zeid C, Tang D, Mukherjee R, Young DB (1994) Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiology 140: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Gilbert S, Steinbrech DS, Landas SK, Hunninghake GW (1993) Amounts of angiotensinconverting enzyme mRNA reflect the burden of granulomas in granulomatous lung disease AM Rev Respir Dis 148: 483–486

    CAS  Google Scholar 

  • Gobin J, Moore CH, Reeve JR Jr, Wong DK, Gibson BW, Horwitz MA (1995) Iron acquisition by Mycobacterium tuberculosis: Isolation and characterization of a family of iron-binding exochelins. Proc Natl Acad Sci USA 92: 5189–5193

    Article  PubMed  CAS  Google Scholar 

  • Goren MB, Brennan PJ (1979) Mycobacterial lipids: chemistry and biologic activities. In: Youmans GP led) Tuberculosis. Saunders, Philadelphia, pp 63–193

    Google Scholar 

  • Goren MB, Broki O, Schaefer WB (1974) Lipids of putative relevance to virulence in Mycobacterium tuberculosis: correlation of virulence with elaboration of sulfatides and strongly acidic lipids. Infect Immun 9: 142–149

    PubMed  CAS  Google Scholar 

  • Greenberg SS, Xie J, Kolls J, Mason C, Didier P (1995) Rapid induction of mRNA for nitric oxide synthase II in rat alveolar macrophages by intratracheal administration of Mycobacterium tuberculosis and Mycobacterium avium. Proc Soc Exp Biol Med 209: 46–53

    PubMed  CAS  Google Scholar 

  • Guilhot C, Otal I, VanRompaey I, Martin C, Gicquel B (1994) Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J Bacteriol 176: 535–539

    PubMed  CAS  Google Scholar 

  • Gupta S, Tyagi AK (1993) Sequence of a newly indentified Mycobacterium tuberculosis gene encoding a protein with a sequence homology to virulence-regulating proteins. Gene 126: 157–158

    Article  PubMed  CAS  Google Scholar 

  • Hirsch CS, Ellmer JJ, Russell DG, Rich EA (1994) Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol 152: 743–753

    PubMed  CAS  Google Scholar 

  • Jacobs WR Jr, Bloom BR (1994) Molecular genetic strategies for identifying virulence determinants of Mycobacterium tuberculosis. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection, and control. ASM Press, Washington DC, pp 253–268

    Google Scholar 

  • Jacobs WR, Doherty MA, Curtiss R Ill, Clark-Curtiss JE (1986) Expression of Mycobacterium leprae genes from a Streptococcus mutans promoter in Escherichia coli K-12. Proc Natl Acad Sci USA 83: 1926–1930

    Article  PubMed  CAS  Google Scholar 

  • Jindal S, Dudani AK, Singh B, Harley CB, Gupta RS (1989) Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol 9: 2279–2283

    PubMed  CAS  Google Scholar 

  • Kalpana GV, Broom BR, Jacobs WR Jr (1991) Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc Natl Acad Sci USA 88: 5433–5437

    Article  PubMed  CAS  Google Scholar 

  • Karopoulous C, Rowley MJ, Handley CJ, Strugnell RA (1995) Antibody reactivity to mycobacterial 65kDa heatshock protein — relevance to autoimmunity. J Autoimmunity 8: 235–248

    Article  Google Scholar 

  • Kathariou S, Metz P, Hof H, Goebel W (1987) Tn916-induced mutations in the hemolysin determinant affecting virulence of Listria monocytogenes. J Bacteriol 169: 1291–1297

    PubMed  CAS  Google Scholar 

  • Kikuta-Oshima LC, King CH, Shinnick TM, Quinn FD (1994) Methods for the identification of virulence genes expressed in Mycobacterium tuberculosis strain H37Rv. Ann NY Acad Sci 730: 263–265

    Article  PubMed  CAS  Google Scholar 

  • King CH, Shinnick TM (1995) Isolation of putative hemolysin gene from Mycobacterium tuberculosis. J Cell Biochem Suppl 1981: 85

    Google Scholar 

  • King CH, Mundayoor S, Crawford JT, Shinnick TM (1993) Expression of contactdependent cytolytic activity by Mycobacterium tuberculosis and isolation of the genomic locus that encodes the activity. Infect Immun 61: 2708–2712

    PubMed  CAS  Google Scholar 

  • Kinger AK, Tyagi JS (1993) Identification and cloning of genes differentially expressed in the virulent strain of Mycobacterium tuberculosis. Gene 131: 113–117

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Apella E, Yamada M, Copeland TD, Oppenheim JJ, Matsushima K (1988) Phosphorylation of intracellular precursors of human IL-1. J Immunol 140: 2279–2287

    PubMed  CAS  Google Scholar 

  • Leao SC, Rocha CL, Murillo LA, Parra CA, Patarroyo ME (1995) A species specific nucleotide sequence of Mycobacterium tuberculosis encodes a protein that exhibits hemolytic activity when expressed in Escherichia coli. Infect Immun 63: 4301–4306

    PubMed  CAS  Google Scholar 

  • Lee MH, Pascopella L, Jacobs WR Jr, Hatfull GF (1991) Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, BCG, and M. tuberculosis. Proc Natl Acad Sci USA 88: 3111–3115

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by measn of the polymerase chain reaction. Science 257: 967–971

    Article  PubMed  CAS  Google Scholar 

  • Lim EM, Rauzier J, Timm J, Torrea G, Murray A, Gicquel B, Portnoi D (1995) Identification of Mycobacterium tuberculosis DNA sequences encoding exported proteins by using phoA gene fusions. J Bacteriol 177: 59–65

    PubMed  CAS  Google Scholar 

  • Lisitsyn N, Lisityn N, Wigler M (1993) Cloning the difference between two complex genomes. Science 259: 946–51

    Article  PubMed  CAS  Google Scholar 

  • Lopez GM, Rom WN, Ciotoli C, Talbot A, Martiniuk F, Cronstein B, Reibman J (1994) Mycobacterium tuberculosis alters expression of adhesion molecules on monocyte cells. Infect Immun 62: 2515–2520

    Google Scholar 

  • Lukacs NW, Kunkel SL, Allen R, Evanoff HL, Shaklee CL, Sherman JS, Burdick MD, Strieter RM (1995) Stimulus and cell specific expression of C-X-C and C-C chemokines by pulmonary stromal cell populations. Am J Physiol 268: L856—L861

    PubMed  Google Scholar 

  • Mahan MJ, Slauch JM, Mekalanos JJ (1993) Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259: 686–688

    Article  PubMed  CAS  Google Scholar 

  • Malpani BL, Kadival GV, Samuel AM (1992) Radio immunoscintigraphic approach for the in vivo detection of tuberculomas-a preliminary study in a rabbit model. Int J Rad Applic Instru-Part B., Nucl Med Bio 19(1): 45–53

    CAS  Google Scholar 

  • Mathiopoulos C, Sonenshein AL (1989) Identification of Bacillus subtilis genes expressed early during sporulation. Mol Microbiol 3: 1071–1081

    Article  PubMed  CAS  Google Scholar 

  • McAdam RA, Weisbrod TR, Martin J, Scuderi JD, Brown AM, Cirillo JD, Bloom BR, Jacobs WR Jr (1995) In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect Immun 63: 1004–1012

    PubMed  CAS  Google Scholar 

  • McDonough KA, Kress Y (1995) cytotoxicity for lung epithelial cells is virulence is a virulence-associated phenotype of Mycobacterium tuberculosis. Infect Immun 63: 4802–4811

    PubMed  CAS  Google Scholar 

  • McDonough KA, Kress Y, Bloom BR (1993) Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages [published erratum appears in Infect Immun 1993 Sep; 61(9): 4021–41. Infect Immun 61: 2763–73

    PubMed  CAS  Google Scholar 

  • Mehta PK, King CH, White EH, Murtaugh JJ Jr, Quinn FD (1996) Comparing in vitro models for the study of Mycobacterium tuberculosis invasion and intracellular replication. Infect Immun (in press)

    Google Scholar 

  • Mendez-Samperio P, Gonzalez-Garcia L, Pineda-Fragoso PR, Ramos-Sanchez E (1995) Specificity of Tcells in human resistance to Mycobacterium tuberculosis infection. Cell Immunol 162: 194–201

    Article  PubMed  CAS  Google Scholar 

  • Middlebrook G, Cohn ML (1953) Some observations on the pathogenicity of isoniazid-resistant variants of tubercle bacilli Science 118: 297–299

    Article  PubMed  CAS  Google Scholar 

  • Middlebrook G, Dubos RJ, Pierce CH (1947) Virulence and morphological characteristics of mamalian tubercle bacilli. J Exp Med 86: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Moulder JW (1985) Comparative biology of intracellular parasitism. Microbiol Rev 49: 298–337

    PubMed  CAS  Google Scholar 

  • Myrvik QN, Leake ES Wright MJ (1984) Disruption of phagosomal membranes of normal alveolar macrophages by the H37Rv strain of Mycobacterium tuberculosis. A correlate of virulence. Am Rev Respir Dis 129: 322–328

    Google Scholar 

  • Ngeleka M, Harel J, Jacques M, Fairbrother JM (1992) Characterization of a polysaccharide capsular antigen of septicemic Escherichia coli 0115: K “V165”: F165 and evaluation of its role in pathogenicity. Infect Immun 60: 5048–5056

    PubMed  CAS  Google Scholar 

  • Norman E Dellagostin OA, McFadden J, Dale JW (1995) Gene replacement by homologous recombination in Mycobacterium bovis BCG. Mol Microbiol 16:755–760

    Article  PubMed  Google Scholar 

  • North RJ, Izzo AA (1993) Mycobacterial virulence. Virulent strains of Mycobacteria tuberculosis have faster in vivo doubling times and are better equipped to resist growth inhibiting functions of macrophages in the presence and absence of specific immunity. J Exp Med 77: 1723–1733

    Article  Google Scholar 

  • O’Brien L, Carmichael J, Lowrie DB, Andrew PW (1994) Strains of Mycobacterium tuberculosis differ in susceptibility to reactive nitrogen intermediates in vitro. Infect Immun 62: 5187–5190

    PubMed  Google Scholar 

  • Ordway DJ, Sonnenberg MG, Donahuye SA, Belisle JT, Orme IM (1995) Drug resistant strains of Mycobacterium tuberculosis exhibit a range of virulence for mice. Infect Immun 63: 741–743

    PubMed  CAS  Google Scholar 

  • Pascopella L, Collins FM, Martin JM, Lee MH, Hatfull GF, Stover CK, Bloom BR, Jacobs WR Jr (1994) Use of in vivo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect Immun 62:1313–1319

    PubMed  CAS  Google Scholar 

  • Peetermans WE, Raats CJI, Langermans JAM, van Furth R (1994) Mycobacterial heat shock protein 65 induces proinflammatory cytokines but does not activate human mononuclear phagocytes. Scand J Immunol 39: 613–617

    Article  PubMed  CAS  Google Scholar 

  • Perez RL, Roman J, Staton GW Jr, Hunter RL (1994) Extravascular coagulation and fibrinolysis in murine lung inflammation induced by the mycobacterial cord factor trehalose-6,6’-dimycolate. Am J Respir Crit Care Med 149: 510–518

    PubMed  CAS  Google Scholar 

  • Perosio PM, Frank TS (1993) Detection and species identification of mycobacteria in paraffin sections of lung biopsy specimens by the polymerase chain reaction. Am J Clin Pathol 100 (6): 643–647

    PubMed  CAS  Google Scholar 

  • Plum G, Clark-Curtiss JE (1994) Induction of Mycobacterium avium gene expression following phagocytosis by human macrophages. Infect Immun 62:476–483

    PubMed  CAS  Google Scholar 

  • Portnoy DA, Jacks PS, Hinrichs DJ (1988) Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167: 1459–1471

    Article  PubMed  CAS  Google Scholar 

  • Raj CV, Ramakrishnan T (1970) Transduction in Mycobacterium smegmatis. Nature 228: 280–281

    PubMed  CAS  Google Scholar 

  • Ratliff TL, Palmer JO, McGarr J, Brown EJ (1987) Intravesical bacillus Calmette-therapy for murine bladder tumors: initiation of the response by fibronectin-mediated attachment of bacillus Calmette-Guerin. Cancer Res 47: 1762–1766

    PubMed  CAS  Google Scholar 

  • Retzinger GS, Meredith SC, Takayama K, Hunter RL (1981) The role of surface in the biological activities of trehalose 6,6’ dimycolate: surface properties and development of a model system. J Biol Chem 256: 8208–8216

    PubMed  CAS  Google Scholar 

  • Retzinger GS, Meredith SC, Hunter RL, Takayama K, Kezdy FJ (1982) Identification of the physiologically active state of the mycobacterial glycolipid trehalose 6,6’ dimycolate monolayers. J Immunol 129: 735–744

    PubMed  CAS  Google Scholar 

  • Retzlaff C, Yamamoto Y, Hoffman PS, Friedman H, Klein TW (1994) Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect Immun 62: 5689–5693

    PubMed  CAS  Google Scholar 

  • Reyrat JM, Berthet FX, Gicquel B (1995) The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guerin. Proc Natl Acad Sci USA 92: 8768–8772

    Article  PubMed  CAS  Google Scholar 

  • Roach TIA, Barton CH, Chatterjee D, Blackwell JM (1993) Macrophage activation: Lipoarabinomannan from avirulent and virulent strains of Mycobacterium tuberculosis differentially induces the early genes c-fos, KC, JE, and tumor necrosis factor-a. J Immunol 150: 1886–1896

    PubMed  CAS  Google Scholar 

  • Roach TIA, Barton CH, Chatterjee D, Liew FY, Blackwell JM (1995) Opposing effects of interferon-gamma on iNOS and interleukin-10 expression in lipopolysaccharide-and mycobacterial lipoarabinomannan-stimulated macrophages. Immunol 85: 106–113

    CAS  Google Scholar 

  • Roach TIA, Chatterjee D, Blackwell JM (1994) Induction of early response genes KC and JE by mycobacterial lipoarabinomannans: regulation of KC expression in murine macrophages by LshltyBcg (candidate Nramp). Infect Immun 62: 1176–1184

    PubMed  CAS  Google Scholar 

  • Rock FM, Landi MS, Meunier LD, Morrsi TH, Rolf LL, Warnick CL, McCreedy BJ, Hughes HC (1995) Diagnosis of a case of Mycobacterium tuberculosis in a cynomolgus (Macaca fascicularis) monkey colony by polymerase chain reaction and enzyme-linked immunosorbent assay. Lab Ani Sci 45: 315–319

    CAS  Google Scholar 

  • Rook GAW, Bloom BR (1994) Mechanisms of pathogenesis in tuberculosis, In: Bloom BR ed) Tuberculosis: pathogenesis, protection, and control. ASM press, Washington DC, pp 485–501

    Google Scholar 

  • Sansonetti PJ (1991) Genetic and molecular basis of epithelial cell invasion by Shigella species. Rev Infect Dis 13: S85–92

    Article  Google Scholar 

  • Schlesinger LS (1993) Macrophage phagocytosis of virulent but not attentuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150:2920–2930

    PubMed  CAS  Google Scholar 

  • Schlesinger LS, Bellinger-Kawahare CG, Payne NR, Horowitz MA (1990) Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 144: 2771–2780

    PubMed  CAS  Google Scholar 

  • Schorey JS, Li O, McCourt DW, Bong-Mastek M, Clark-Curtiss JE, Ratliff TL, Brown EJ (1995) A Mycobacterium leprae gene encoding a fibronectin binding protein is used for efficient invasion of epithelial cells and Schwann cells. Infect Immun 63: 2652–2657

    PubMed  CAS  Google Scholar 

  • Sibley LD, Hunter SW, Brennan PJ, Krahenbuhl JL (1988) Mycobacterial lipoarabinomannan inhibits gamma interferon mediated activation of macrophages. Infect Immun 56: 1232–1236

    PubMed  CAS  Google Scholar 

  • Silva CL (1995) New vaccines against tuberculosis. Braz J Med Biol Res 28: 843–851

    PubMed  CAS  Google Scholar 

  • Silva CL, Ekizlerian SM, Fazioli RA (1985) Role of cord factor in the modulation of infection caused by mycobacteria. Am J Pathol 118: 238–247

    PubMed  CAS  Google Scholar 

  • Singh NB, Srivastava K, Malaviya B, Srivastava A, Gupta HP (1995) The 65 kDa protein of Mycobacterium habana and its putative role in immunity against experimental tuberculosis. Immunol Cell Biol 73: 372–376

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1968) Biochemical challange of microbial pathogenicity. Bacteriol Rev 32: 164–184

    PubMed  CAS  Google Scholar 

  • Stadnyk AW (1994) Cytokine production by epithelial cells. FASEB J 8: 1041–1047

    PubMed  CAS  Google Scholar 

  • Steenken W Jr, Oatway WH, Petroff SA (1934) Biological studies of the tubercle bacillus. III. Dissociation and pathogenecity of the R and S variants of the human tubercle bacillus (H37). J Exp Med 60: 515–525

    Article  PubMed  CAS  Google Scholar 

  • Stephens DS (1989) Gonococcal and meningococcal pathogenesis as defined by human cell, cell culture, and organ culture assays. Clin Microbiol Rev 2 (suppl.): 5104–5111

    Google Scholar 

  • Straus D, Ausubel FM (1990) Genomic subtractions for cloning DNA corresponding to deletion mutation. Proc Natl Acad Sci 87: 1889–1893

    Article  PubMed  CAS  Google Scholar 

  • Sturgil-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263: 678–681

    Article  Google Scholar 

  • Timblin C, Battey J, Kuehl WM (1990) Application for PCR technology to subtractive cDNA cloning: identification of genes expressed specifically in murine plasmacytoma cells. Nucl Acids Res 18: 1587–1593

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga T, Mizuguchi Y, Suga K (1973) Genetic recombination in mycobacteria. J Bacteriol 113: 1104–1111

    PubMed  CAS  Google Scholar 

  • Udou T (1994) Extracellular hemolytic activity in rapidly growing mycobacteria. Can J Microbiol 40: 318–321

    Article  PubMed  CAS  Google Scholar 

  • Utt EA, Brousal JP, Kikuta-Oshima LC, Quinn FD (1995) The identification of bacterial gene expression differences using mRNA-based isothermal subtractive hybridization. Can J Microbiol 41: 152–156

    Article  PubMed  CAS  Google Scholar 

  • Verma A, Kinger AK, Tyagi JS (1994) Functional analysis of transcription of the Mycobacterium tuberculosis 16s rDNA-encoding gene. Gene 148: 113–118

    Article  PubMed  CAS  Google Scholar 

  • Welch RA, Felmlee T, Pellett F, Chenoweth DE (1986) The Escherichia coli haemolysin: Its gene organization and interaction with neutrophil receptors. In: lark DL et al. (eds) Protein-carbohydrate interactions in biological systems: the molecular biology of microbial pathogenicity. New York, pp 431–438

    Google Scholar 

  • Wiker HG, Harboe M (1992) The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol Rev 56: 648–661

    PubMed  CAS  Google Scholar 

  • Weinberg ED (1993) The iron-withholding defense system. ASM News 59: 559–562

    Google Scholar 

  • Wilson CB, Tsai V, Remington JS (1980) Failure to trigger the oxidative burst of normal macrophages. Possible mechanisms for survival of intracellular pathogens. J Exp Med 151: 328–346

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Cooper A, Sturgill-Koszycki S, van Heyningen T, Chatterjee D, Orme I, Allen P, Russell DG (1994) Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J Immunol 153: 2568–2578

    PubMed  CAS  Google Scholar 

  • Young RA, Bloom BR, Grosskinsky CM, Ivanyi J, Thomas D, Davis RW (1985) Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proc Natl Acad Sci USA 82: 2583–2587

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Medina D (1993) Gene expression screening for specific genes associated with mouse mammary tumor development. Mol Carcino 8: 123–136

    Article  CAS  Google Scholar 

  • Zhang L, Goren MB, Holzer TJ, Andersen BR (1988) Effect of Mycobacterium tuberculosis derived sulfolipid I on human phagocytic cells. Infect Immun 56: 2876–2883

    PubMed  CAS  Google Scholar 

  • Zhang L, English D, Andersen BR (1991a) Activation of human neutrophils by Mycobacterium tuberculosis derived sullfolipid-l. Immunol 146: 2730–2736

    Google Scholar 

  • Zhang Y, Lathigra R, Garbe T, Catty D, Young D (1991 b) Genetic analysis of superoxide dismutase, the 23 kilodalton antigen of Mycobacterium tuberculosis. Mol Microbiol 5: 381–391

    Article  CAS  Google Scholar 

  • Zhang Y, Broser M, Cohen H, Bodkin M, Law K, Reibman J, Rom WN (1995) Enhanced interleukin-8 release and gene expression in macrophages after exposure to Mycobacterium tuberculosis and its components. J Clin Invest 95: 586–592

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Quinn, F.D., Newman, G.W., King, C.H. (1996). Virulence Determinants of Mycobacterium tuberculosis . In: Shinnick, T.M. (eds) Tuberculosis. Current Topics in Microbiology and Immunology, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80166-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80166-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80168-6

  • Online ISBN: 978-3-642-80166-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics