Skip to main content

Proteolytic Processing and Particle Maturation

  • Chapter
Morphogenesis and Maturation of Retroviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 214))

Abstract

Proteolytic processing of the structural and enzymatic proteins of viruses is a common phenomenon (Krausslich and Wimmer 1988; Dougherty and Semler 1993). Well-studied examples include picornaviruses (such as poliovirus), alphaviruses (such as Sindbis virus), adenoviruses, plant viruses (such as potyviruses), and bacteriophage (such as T4). Cleavages of viral polypeptides have diverse functions, but they can be viewed most simply as serving to drive a reaction in one direction, since hydrolysis of the peptide bond in most situations is irreversible. In particular, cleavages often play roles in virion morphogenesis; in the most extreme cases complete degradation of a “scaffolding protein” is needed for the final infectious virus particle to be formed from an immature particle. In retroviruses all three major virion proteins, Gag, Pol, and Env, are proteolytically processed. For Gag and Pol it is the virus-encoded protease (PR) that accomplishes these cleavages, while for Env it is a host-encoded protease found in the Golgi apparatus. However, in some viruses the very C-terminus of Env also is processed by PR. In this chapter only PR-mediated processing is discussed, with a focus on the regulation of processing and the consequences of processing. Related topics such as PR structure, mechanism of catalysis, action of protease inhibitors, comparative aspects of retroviral proteases, and specificity of cleavage are treated perfunctorily. Many aspects of proteolytic processing in retroviruses have been reviewed elsewhere (Kráusslich and Wimmer 1988; Skalka 1989; Fitzgerald and Springer 1991; Wills and Craven 1991; Debouck 1992; Wlodawer and Erickson 1993; Katz and Skalka 1994; Ringe 1994; Tomasselli and Heindrikson 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Meguid SS, Zhao B, Murthy KHM, Winborne E, Choi JK, Desjarlais RL, Minnich MD, Culp JS, Debouck D, Tomaszek TA Jr, etal (1993) Inhibition of human immunodeficiency virus-1 protease by a c-2- symmetric phosphinate. Synthesis and crystallographic analysis. Biochemistry 32: 7972–7980

    PubMed  CAS  Google Scholar 

  • Ainsztein AM, Purich DL (1992) Cleavage of bovine brain microtubule associated protein-2 by human immunodeficiency virus proteinase. J Neurochem 59: 874–880

    PubMed  CAS  Google Scholar 

  • Babé LM, Rosé J, Craik CS (1992) Synthetic “interface” peptides alter dimeric assembly of the HIV 1 and 2 proteases. Protein Sci 1: 1244–1253 Bennett RP, Rhee S, Craven RC, Hunter E, Wills JW (1991) Amino acids encoded downstream of Gag are not required by Rous sarcoma virus protease during Gag-mediated assembly. J Virol 65: 272–280

    Google Scholar 

  • Berkowitz RD, Ohagen A, Hòglund S, Goff SP (1995) Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo. J Virol 69: 6445–6456

    PubMed  CAS  Google Scholar 

  • Boutelje J, Karlstrom AR, Hartmanis MGN, Holmgren E, Sjogren A, Levine RL (1990) Human immunodeficiency viral protease is catalytically active as a fusion protein: characterization of the fusion and native enzymes produced inEscherichia coli. Arch Biochem Biophys 283: 141–149

    PubMed  CAS  Google Scholar 

  • Bowles N, Bonnet D, Mulhauser F, Spahr PF (1994) Site-directed mutagenesis of the P2 region of the Rous sarcoma virus Gag gene: effects on Gag polyprotein processing. Virology 203: 20–28

    PubMed  CAS  Google Scholar 

  • Brody BA, Rhee SS, Sommerfelt MA, Hunter E (1992) A viral protease-mediated cleavage of the transmembrane glycoprotein of Mason-Pfizer monkey virus can be suppressed by mutations within the matrix protein. Proc Natl Acad Sci USA 89: 3443–3447

    PubMed  CAS  Google Scholar 

  • Brody BA, Rhee SS, Hunter E (1994) Postassembly cleavage of a retroviral glycoprotein cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. J Virol 68: 4620–4627

    PubMed  CAS  Google Scholar 

  • Bryant M, Ratner L (1990) Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci USA 87: 23–527

    Google Scholar 

  • Burstein H, Bizub D, Skalka AM (1991) Assembly and processing of avian retroviral gag polyproteins containing linked protease dinners. J Virol 65: 6165–6172

    PubMed  CAS  Google Scholar 

  • Burstein H, Bizyb D, Kotler M, Schatz G, Vogt VM, Skalka AM (1992) Processing of avian retroviral Gag polyprotein precursors is blocked by a mutation in the NC-PR cleavage site. J Virol 66: 1781–1785

    PubMed  CAS  Google Scholar 

  • Cameron CE, Grinde B, Jentoft J, Leis J, Weber IT, Copeland TD, Wlodawer A (1992) Mechanism of inhibition of the retroviral protease by a Rous sarcoma virus peptide substrate representing the cleavage site between the Gag P2 and P10 proteins. J Biol Chem 267: 23735–23741

    PubMed  CAS  Google Scholar 

  • Cameron CE, Ridky TW, Shulenin S, Leis J, Weber IT, Copeland T, Wlodawer A, Burstein H, Bizub- Bender D, Skalka AM (1994) Mutational analysis of the substrate binding pocket of the Rous sarcoma virus and human immunodeficiency virus-1 protease. J Biol Chem 269: 11170–11177

    Google Scholar 

  • Chou JJ (1993) A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J Biol Chem 268: 16938-16948 Co E, Koelsch G, Lin Y, Ido E, Hartsuck JA, Tang J (1994) Proteolytic processing mechanisms of a miniprecursor of the aspartic protease of human immunodeficiency virus type 1. Biochemistry 33: 1248–1254

    Google Scholar 

  • Craven RC, Bennett RP, Wills JW (1991) Role of the avian retroviral protease in the activation of reverse transcriptase during virion assembly. J Virol 65: 6205–6217

    PubMed  CAS  Google Scholar 

  • Craven RC, Leure-duPree AE, Erdie CR, Wilson CB, Wills JW (1993) Necessity of the spacer peptide between CA and NC in the Rous sarcoma virus Gag protein. J Virol 67: 6246–6252

    Google Scholar 

  • Crawford S, Goff SP (1985) A deletion mutation in the 5’ part of the poi gene of Moloney murine leukemia virus blocks proteolytic processing of the gag and poi polyproteins. J Virol 53: 899–907

    PubMed  CAS  Google Scholar 

  • Darke PL (1994) Stability of dimeric retroviral proteases. In: Kuo LC, Shafer JA (eds) Retroviral proteases. Academic, New York, pp 104–127 (Methods in enzymology, vol 241 )

    Google Scholar 

  • Darke PL, Jordan SP, Hall DL, Zugay JA, Shafer JA, Kuo LC (1994) Dissociation and association of the HIV-1 protease dimer subunits: equilibria and rates. Biochemistry 33: 98–105

    PubMed  CAS  Google Scholar 

  • Davies DR (1990) The structure and function of the aspartic proteinases. Annu Rev Biophys Chem 19: 189–215

    CAS  Google Scholar 

  • Debouck C (1992) The HIV-1 protease as a therapeutic target of AIDS. AIDS Res Hum Retroviruses 8: 153–164

    PubMed  CAS  Google Scholar 

  • Desjarlais RL, Seibel GL, Kuntz ID, Furth PS, Alvarez JC, Ortiz de Montellano PR, Decamp DL, Babé LM, Craik CS (1990) Structure-based design of nonpeptide inhibitors specific for the human immunodeficiency virus 1 protease. Proc Natl Acad Sci USA 87: 6644–6648

    CAS  Google Scholar 

  • Divita G, Rittinger K, Geourjon C, Deléage G, Goody RS (1995) Dimerization kinetics of HIV-1 and HIV-2 reverse transcriptase: a two step process. J Mol Biol 245: 508–521

    PubMed  CAS  Google Scholar 

  • Dougherty WG, Semler BL (1993) Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev 57: 781–822

    PubMed  CAS  Google Scholar 

  • Dunn DM, Gustchina A, Wlodawer A, Kay J (1994). Subsite preferences of retroviral proteases. In:Kuo LC, Shafer JA (eds) Retroviral proteases. Academic, New York, pp 254–278 (Methods in enzymology, vol 241)

    Google Scholar 

  • Eisenman R, Vogt VM (1978) The biosynthesis of oncovirus proteins. Biochim Biophys Acta (Cancer Rev) 473: 187–239

    CAS  Google Scholar 

  • Eisenman RN, Mason WS, Linial M (1980) Synthesis and processing of polymerase proteins of wild type and mutant avian retroviruses. J Virol 36: 89–104

    Google Scholar 

  • Erickson-Viitanen S, Manfredi J, Viitanen P, Tribe DE, Tritch R, Hutchison CAM I, Loeb DD, Swanstrom R (1989) Cleavage of HIV-1 Gag polyprotein synthesized in-vitro. Sequential cleavage by the viral protease. AIDS Res Hum Retroviruses 5: 577–592

    Google Scholar 

  • Fäcke M, Janetzko A, Shoeman RL, Kräusslich HG (1993) A large deletion in the matrix domain of the human immunodeficiency virusGag gene redirects virus particle assembly from the plasma membrane to the endoplasmic reticulum. J Virol 67: 4972–4980

    PubMed  Google Scholar 

  • Freund J, Kellner R, Konvalinka J, Wolber V, Kräusslich H-G, Kalbitzer HR (1994) A possible regulation of negative factor (Nef) activity of human immunodeficiency virus type 1 by the viral protease. Eur J Biochem 223: 589–593

    PubMed  CAS  Google Scholar 

  • Fitzgerald PMD, Springer JE (1991) Structure and function of retroviral proteases. Annu Rev Biophys Chem 20: 299–320

    CAS  Google Scholar 

  • Fu W, Rein A (1993) Maturation of dimeric viral RNA of Moloney murine leukemia virus. J Virol 67: 5443–5449

    PubMed  CAS  Google Scholar 

  • Gelderblom HR (1991) Assembly and morphology of HIV: potential effect of structure on viral function. AIDS 5: 617–638

    Google Scholar 

  • Göttlinger HG, Sodroski JG, Haseltine WA (1989) Role of capsid presursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sei USA 86: 5781–5785

    Google Scholar 

  • Griffiths JT, Phylip LH, Konvalinka J, Strop P, Gustchina A, Wlodawer A, Davenport RJ, Briggs R, Dunn BM, Kay J (1992) Different requirements for productive interaction between the active site of HIV-1 proteinase and substrates containing hydrophobic or aromatic pro cleavage sites. Biochemistry 31: 5193–5200

    PubMed  CAS  Google Scholar 

  • Grinde B, Cameron CE, Leis J, Weber IT, Wlodawer A, Burstein H, Skalka AM (1992) Analysis of substrate interactions of the Rous sarcoma virus wild type and mutant proteases and human immunodeficiency virus 1 protease using a set of systematically altered peptide substrates. J Biol Chem 267: 9491–9498

    PubMed  CAS  Google Scholar 

  • Hizi A, Leis JP, Joklik WK (1977) RNA-dependent DNA polymerase of avian sarcoma virus B77. I. Isolation and partial characterization of the a, ß2, and aß enzyme forms. J Biol Chem 252: 2290–2295

    PubMed  CAS  Google Scholar 

  • Ho D, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1995) Rapid turnover of plasma virons and CD4 lymphocytes in HIV-1 infection. Nature 373: 123–126

    PubMed  CAS  Google Scholar 

  • Höglund S, Öfverstedt L-G, Nilsson A, Lundquist P, Gelderblom H, Özel M, Skoglund U (1992) Spatial visualization of the maturing HIV-1 core and its linkage to the envelope. AIDS Res Hum Retroviruses 8: 1–7

    PubMed  Google Scholar 

  • Hostomsky Z, Hostomska Z, Fu T-B, Taylor J (1992) Reverse transcriptase of human immunodeficiency virus type 1: functionality of subunits of the heterodimer in DNA synthesis. J. Virol 66: 3179–3182

    PubMed  CAS  Google Scholar 

  • Hruskovä-Heidingsfeldovä O, Andreansky M, Fabry M, Blaha I, Strop P, Hunter E (1995) Cloning, bacterial expression and characterization of the Mason-Pfizer monkey virus proteinase. J Biol Chem 270: 15053–15058

    PubMed  Google Scholar 

  • Jacks T, Varmus HE (1985) Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science 230: 1237–1242

    PubMed  CAS  Google Scholar 

  • Jacobo-Molina A, Ding J, Nanni R, Clark AD, Lu X, Tantillo C, Williams RL, Kamer G, Ferris AL, Clark P,Hizi A, Hughes SH, Arnold E (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sei USA 90: 6320–6324

    CAS  Google Scholar 

  • Jacobsen H, Ahlborn-Laake L, Gugel R, Mous J (1992) Progression of early steps of human immunodeficiency virus type 1 replication in the presence of an inhibitor of viral protease. J Virol 66: 5087–5091

    PubMed  CAS  Google Scholar 

  • James MNG, Sielecki AR (1986) Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 A resolution. Nature 319: 33–38.

    PubMed  CAS  Google Scholar 

  • Jaskölski M, Miller M, Rao JKM, Leis J, Wlodawer A (1990) Structure of the aspartic protease from Rous sarcoma retrovirus refined at 1 A resolution. Biochemistry 29: 5889–5898

    PubMed  Google Scholar 

  • Kaplan AH, Swanstrom R (1991) Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proc Natl Acad Sei USA 88: 4528–4532

    CAS  Google Scholar 

  • Kaplan AH, Zack JA, Knigge M, Paul DA, Kempf DJ, Norbeck DW, Swanstrom R (1993) Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J Virol 67: 4050–4055

    PubMed  CAS  Google Scholar 

  • Kaplan AH, Krogstad P, Kempf DJ, Norbeck DW, Swanstrom R (1994a) Human immunodeficiency virus type 1 virions composed of unprocessed Gag and Gag-Pol precursors are capable of reverse transcribing viral genomic RNA. Antimicrobial Agents Chemotherapy 38: 2929–2933

    CAS  Google Scholar 

  • Kaplan AH, Manchester M, Swanstrom R (1994b) The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. J Virol 68: 6782–6786

    PubMed  CAS  Google Scholar 

  • Katoh I, Yoshinaka Y, Rein A, Shjibuya M, Adaka T, Oroszlan S (1985). Murine leukemia virus maturation: protease region required for conversion from “immature” to “mature” core form and for virus infectivity. Virology 145: 280–292

    PubMed  CAS  Google Scholar 

  • Katz R A, Skalka AM (1988) A C-terminal domain in the avian sarcoma-leukosis virus pol gene product is not essential for viral replication. J Virol 62: 528–533

    PubMed  CAS  Google Scholar 

  • Katz RA, Skalka AM (1994) The retroviral enzymes. In: Richardson CC (ed) Annual Review of Biochemistry, vol. 63. Annual Reviews, Palo Alto, pp 133–173

    Google Scholar 

  • Kohl NE, Emini EA, Schleif WA, Davis LJ, Heimbach JC, Dixon RAF, Scolnick EM, Sigal IS (1988) Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sei USA 85: 4686–4690

    CAS  Google Scholar 

  • Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256: 1783–1790

    PubMed  CAS  Google Scholar 

  • Konvalinka J, Horejsi M, Andreansky M, Novek P, Pichova I, Blaha I, Fabry M, Sedlacek J, Foundling S, Strop P (1992) An engineered retroviral proteinase from myeloblastosis associated virus acquires pH dependence and substrate specificity of the HIV-1 proteinase. EMBO J 11: 1141–1144

    Google Scholar 

  • Konvalinka J, Heuser AM, Hruskova-Heidingsfeldova O, Vogt VM, Sedlacek J, Strop P, Kräusslich HG (1995a) Proteolytic processing of particle-associated retroviral polyproteins by homologous and heterologous viral proteinases. Eur J Biochem 228: 191–198

    PubMed  CAS  Google Scholar 

  • Konvalinka J, Litterst MA, Welker R, Rippmann R, Heuser A-M, Kräusslich HG (1995b) HIV-1 protease (PR) active site mutation causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity J Virol 69: 7180–7186

    CAS  Google Scholar 

  • Konvalinka J, Loechelt M, Zentgraf H, Fluegel RM, Kräusslich H-G (1995c) Active foamy virus proteinase is required for virus infectivity but not for formation of a Pol polyprotein. J Virol 69: 7264–7268

    PubMed  CAS  Google Scholar 

  • Korb J, Trävnicek M, Riman J (1976) The oncornavirus maturation process: quantitative correlation between morphological changes and conversion of genomic virion RNA. Intervirology 7: 211–224

    PubMed  CAS  Google Scholar 

  • Kotler M, Arad G, Hughes SH (1992) Human immunodeficiency virus type 1 Gag-protease fusion proteins are enzymatically active. J Virol 66: 6781–6783

    PubMed  CAS  Google Scholar 

  • Kottier H, Weber J, Konvalinka J, Kräusslich H-G (1995) A mutation in HIV-1 proteinase gives rise to a virus temperature-sensitive for polyprotein processing and for viral infectivity (manuscript in preparation)

    Google Scholar 

  • Kräusslich HG (1991) Human immunodeficiency virus proteinase dimer as a component of the viral polyprotein prevents particle assembly and viral infectivity. Proc Natl Acad Sei USA 88: 3213–3217

    Google Scholar 

  • Kräusslich HG (1992) Specific inhibitor of human immunodeficiency virus proteinase prevents the cytotoxic effects of a single-chain proteinase dimer and restores particle formation. J Virol 66: 567–572

    PubMed  Google Scholar 

  • Kräusslich HG, Wimmer E (1988) Viral proteinases. Annu Rev Biochem 57: 701–754

    PubMed  Google Scholar 

  • Kräusslich HG, Schneider H, Zybarth G, Carter CA, Wimmer E (1988) Processing ofin vitrosynthesized Gag precursor proteins of human immunodeficiency virus HIV type 1 by HIV proteinase generated inEscherichia coli. J Virol 62: 4393–4397

    PubMed  Google Scholar 

  • Kräusslich HG, Ingraham RH, Skoog MT, Wimmer E, Pallai PV, Carter (1989) Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. Proc Nat Acad Sei USA 86: 807–811

    Google Scholar 

  • Kräusslich HG, Fäcke M, Heuser AM, Konvalinka J, Zentgraf W (1995) The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity. J Virol 69: 3407–3419

    PubMed  Google Scholar 

  • Kuff EL, Lueders KK (1988) The intracisternal A particle gene family: structure and functional aspects. Adv Cancer Res 51: 183–276

    PubMed  CAS  Google Scholar 

  • Lapatto R, Blundell T, Hemmings A, Overington J, Wilderspin A, Wood S, Merson JR, Whittle PJ, Danley DE, Geoghegan KF, Hawryklik SJ, Lee SE, Scheid KG, Hobart PM (1989) X-ray analysis of HIV-1 proteinase at 2.7 Ä resolution confirms structural homology among retroviral enzymes. Nature 342: 299–302

    PubMed  CAS  Google Scholar 

  • LeGrice SFJ, Naas T, Wohlgensinger B, Schatz O (1991) Subunit-selective mutagenesis indicates minimal polymerase activity in heterodimer associated p51 of HIV-1 reverse transcriptase. EMBO J 10: 3905–3911

    Google Scholar 

  • Loeb DD, Swanstrom RS, Everitt L, Manchester M, Stamper SE, Hutchison CA III (1989) Complete mutagenesis of the HIV-1 protease. Nature 340: 397–400

    PubMed  CAS  Google Scholar 

  • Louis JM, Nashed NT, Parris KD, Kimmel AR, Jerina DM (1994) Kinetics and mechanism of autoprocessing of human immunodeficiency virus type 1 protease from an analog of the Gag-Pol polyprotein. Proc Natl Acad Sei USA 91: 7970–7974

    CAS  Google Scholar 

  • Luftig RB, Yoshinaka Y (1978) Rauscher leukemia virus populations enriched for “immature” virions contain increased amounts of P70, the gag gene product. J Virol 25: 416–421

    PubMed  CAS  Google Scholar 

  • Manchester M, Everitt L, Loeb DD, Hutchison CAIII, Swanstrom R (1994) Identification of temperature-sensitive mutants of the human immunodeficiency virus type 1 protease through saturation mutagenesis: amino acid side chain requirements for temperature sensitivity. J Biol Chem 269: 7689–7695

    PubMed  CAS  Google Scholar 

  • Mervis RJ, Ahmad N, Lillehoj EP, Raum MG, Salazar FHR, Chan HW, Venkatesan S (1988) The gag gene products of human immunodeficiency virus type 1. Alignment within the gag open reading frame, identification of posttranslational modifications, and evidence for alternative gag precursors. J Virol 62: 3993–4002

    Google Scholar 

  • Miller M, Schneider J, Sathyanarayana BK, Toth MV, Marchall GR, Clawson L, Selk L, Kent SBH, Wlodawer A (1989) Structure of complex of synthetic HIV-1 protease with a substrate based inhibitor at 2.3 A resolution. Science 246: 1149–1152

    PubMed  CAS  Google Scholar 

  • Moody MD, Pettit SC, Shao W, Everitt L, Loeb DD, Hutchison CA III, Swanstrom R (1995) A side chain at position 48 of the human immunodeficiency virus type-1 protease flap provides an additional specificity determinant. Virology 207: 475–485

    PubMed  CAS  Google Scholar 

  • Nagy K, Young M, Baboonian C, Merson J, Whittle P, Oroszlan S (1994) Antiviral activity of human immunodeficiency virus type 1 protease inhibitors in a single cycle of infection: evidence for a role of protease in the early phase. J Virol 68: 757–765

    PubMed  CAS  Google Scholar 

  • Navia MA, Fitzgerald PMD, McKeever BM, Leu C-T, Heimbach JC, Herber WK, Sigal IS, Darke PL, Springer JP (1989) Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337: 615–620

    PubMed  CAS  Google Scholar 

  • Nermut MV, Hockley DJ, Jowett JBM, Jones IM, Garreau M, Thomas D (1994) Fullerene-like organization of HIV gag protein shell in virus-like particles produced by recombinant baculovirus. Virology 198: 288–296

    PubMed  CAS  Google Scholar 

  • Nicholson LK, Yamazaki T, Torchia DA, Grzesiek S, Bax A, Stahl SJ, Kaufman JD, Wingfield PT, Lam PYS, Jadhav PK, Hodge CN, Domaille PJ, Chang CH (1995) Flexibility and function in HIV-1 protease. Nature Struct Biol 2: 274–280

    PubMed  CAS  Google Scholar 

  • Oertie S, Spahr P-F (1990) Role of the Gag polyprotein precursor in packaging and maturation of Rous sarcoma virus genomic RNA. J Virol 64: 5757–5763

    Google Scholar 

  • Oertie S, Bowles N, Spahr P-F (1992) Complementation studies with RSV Gag and Gag-Pol polyprotein mutants. J Virol 66: 3873–3878

    Google Scholar 

  • Oppermann H, Bishop JM, Varmus HE, Levintow L (1977) A joint product of the genes gag and pol of avian sarcoma virus: a possible precursor of reverse transcriptase Cell 12: 993–1005

    CAS  Google Scholar 

  • Otto MJ, Garber S, Winslow DL, Reid CD, Aldrich P, Jadhar PK, Patterson CE, Hodge CN, Cheng Y-SE (1993) In vitro isolation and identification of human immunodeficiency virus (HIV) variant with reduced sensitivity to C-2 symmetrical inhibitors of HIV type 1 protease. Proc Natl Acad Sei USA 90: 7543–7547

    Google Scholar 

  • Peng C, Ho BK, Chang TW, Chang NT (1989) Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity. J Virol 63: 2550–2556

    PubMed  CAS  Google Scholar 

  • Peng C, Chang NT, Chang TW (1991) Identification and characterization of human immunodeficiency virus type 1 gag-pol fusion protein in transfected mammalian cells. J Virol 65: 2751–2756

    PubMed  CAS  Google Scholar 

  • Pepinsky RB (1983) Localization of lipid-protein and protein-protein interactions within the murine retrovirus gag precursor by a novel peptide mapping technique. J Biol Chem 258: 11229–11235

    PubMed  CAS  Google Scholar 

  • Pepinsky RB, Papayannopoulos IA, Chow EP, Krishna NK, Craven RC, Vogt VM (1995) Differential proteolytic processing leads to multiple forms of the CA protein of avian sarcoma and leukemia viruses. J Virol 69: 6430–6438

    PubMed  CAS  Google Scholar 

  • Pepinsky RB, Papayannopoulos IA, Campbell S, Vogt VM (1996) Analysis of Rous sarcoma virus Gag proteins by mass spectrometry indicates trimming by host exopeptidase. J Virol 70: (in press)

    Google Scholar 

  • Pettit SC, Simsic J, Loeb DD, Everitt L, Hutchison CA III, Swanstrom R (1991) Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the structural requirements of the P1 amino acid. J Biol Chem 266: 14539–14547

    PubMed  CAS  Google Scholar 

  • Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA, Swanstrom R (1994) The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 68: 8017–8027

    PubMed  CAS  Google Scholar 

  • Pichova I, Strop P, Sedlacek J, Kapralek F, Benes V, Travnicek M, Pavlickova L, Soujcek M, Kostka V, Foundling S (1992) Isolation and biochemical characterization and crystallizaton of the p15Gag proteinase of myeloblastosis associated virus expressed in E. coli. Int J Biochem 24: 235–242

    CAS  Google Scholar 

  • Pinter A, DeHarven E (1979) Protein composition of a defective murine sarcoma virus particle possessing the enveloped Type-A morphology. Virology 99: 103–110

    Google Scholar 

  • Phylip LH, Mills JS, Parten BF, Dunn BM, Kay J (1992) Intrinsic activity of precursor forms of HIV-1 proteinase. FEBS Lett 314: 449–454

    PubMed  CAS  Google Scholar 

  • Poorman RA, Tomasselli AG, Heinrikson RL, Kézdy FJ (1991) A cumulative specificity model for proteases from human immunodeficiency virus types 1 and 2, inferred from statistical analysis of an extended substrate data base. J Biol Chem 266: 14554–14561

    PubMed  CAS  Google Scholar 

  • Prats A-C, Sarin L, Gabus C, Litvak S, Keith G, Darlix J-L (1988) Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA. EMBO J. 7: 1777–1783

    Google Scholar 

  • Rao JKM, Erickson JW, Wlodawer A (1991) Structural and evolutionary relationships between retroviral and eucaryotic aspartic proteinases. Biochemistry 30: 4663–4671

    PubMed  CAS  Google Scholar 

  • Rein A, McClure MR, Rice NR, Luftig RB, Schultz AM (1986) Myristylation site in Pr65gag is essential for virus particle formation by Moloney murine leukemia virus. Proc Nat Acad Sci USA 83: 7246–7250

    PubMed  CAS  Google Scholar 

  • Rein A, Mirro J, Haynes JG, Ernst SM, Nagashima K (1994) Function of the cytoplasmic domain of a retroviral transmembrane protein: p15E-p12E cleavage activates the membrane fusion capability of the murine leukemia virus Env protein. J Virol 68: 1773–1781

    PubMed  CAS  Google Scholar 

  • Restle T, Mueller B, Goody RS (1990) Dimerization of human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 265: 8986 - 8988

    PubMed  CAS  Google Scholar 

  • Rhee SS, Hunter E (1987) Myristylation is required for intracellular transport but not for assembly of Dtype retrovirus capsids. J Virol 61: 1046–1053

    Google Scholar 

  • Rice NR, Henderson LE, Sowder RC, Copeland TD, Oroszlan S, Edwards JF (1990) Synthesis and processing of the transmembrane envelope protein of equine infectious anemia virus. J. Virol 64: 3770–3778

    PubMed  CAS  Google Scholar 

  • Ringe D (1994) X-ray structures of retroviral proteases and their inhibitor-bound complexes. In: Kuo LC, Shafer JA (eds) Retroviral proteases. Academic, New York, pp 157–177 (Methods in enzymology, vol 241 )

    Google Scholar 

  • Riviere Y, Blank R, Kourilsky P, Israel I (1991) Processing of the precursor of NK-kappa B by the HIV-1 protease during acute infection. Nature 350: 625–626

    PubMed  CAS  Google Scholar 

  • Roberts MM, Copeland TD, Oroszlan S (1991)In situ processing of a retroviral nucleocapsid protein by the viral proteinase. Protein Eng 4: 695–700

    Google Scholar 

  • Rosé JR, Salto R, Craik CS (1993) Regulation of autoproteolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions. J Biol Chem 268: 11939–11945

    PubMed  Google Scholar 

  • Rosé JR, Babé LM, Craik CS (1995) Defining the level of human immunodeficieincy virus type 1 (HIV-1) protease activity required for HIV1 particle maturation and infectivity. J Virol 69: 2751–2758

    PubMed  Google Scholar 

  • Schatz G, Pichova I, Vogt VM (1996) Cleavage and miscleavage at the mutant and wild type NC-PR junction in avian sarcoma and leukemia viruses (manuscript in preparation)

    Google Scholar 

  • Sellos-Moura M, Vogt VM (1995) Proteolytic activity of the NC-PR fragment of avian sarcoma and leukemia virus Gag protein purified from E. coli. Virology (in press)

    Google Scholar 

  • Sheng N, Erickson-Viitanen S (1994) Cleavage of p15 protein in vitro by human immunodeficiency virus type 1 protease is RNA dependent. J Virol 68: 6207–6214

    PubMed  CAS  Google Scholar 

  • Shoeman RL, Honer B, Stoller TJ, Kesselmeier C, Miedel MC, Traub P, Graves MC (1990) Human immunodeficiency virus-1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc Natl Acad Sei USA 87: 6636–6340

    Google Scholar 

  • Skalka AM (1989) Retroviral proteases: a first glimpse at the anatomy of a processing machine. Cell 56: 911–913

    PubMed  CAS  Google Scholar 

  • Soltis DA, Skalka AM (1988) The a and ß chains of avian retrovirus reverse transcriptase independently expressed in E. coli: characterization of enzymatic activities. Proc Natl Acad Sei USA 85: 3372–3376

    CAS  Google Scholar 

  • Sonigo P, Barker C, Hunter E, Wain-Hobson S (1986) Nucleotide sequence of Mason-Pfizer monkey virus, an immunosuppressive type D retrovirous. Cell 45: 373–386

    Google Scholar 

  • Sommerfelt MA, Petteway JR, Dreyer GB, Hunter E (1992) Effect of retroviral proteinase inhibitors on Mason-Pfizer monkey virus maturation and transmembrane protein cleavage. J Virol 66: 4220–4227

    PubMed  CAS  Google Scholar 

  • Stewart L, Vogt VM (1991) Trans-acting viral protease is necessary and sufficient for activation of avian leukosis virus reverse transcriptase. J Virol 65: 6218–6231

    PubMed  CAS  Google Scholar 

  • Stewart L, Vogt VM (1993) Reverse transcriptase and protease activities of avian leukosis virus Gag-Pol fusion proteins expressed in insect cells. J Virol 67: 7582–7596

    PubMed  CAS  Google Scholar 

  • Stewart L, Vogt VM (1994) Proteolytic cleavage at the Gag-Pol junction in avian leukosis viruses:differences in vitro and in vivo. Virology 204: 45–59

    PubMed  CAS  Google Scholar 

  • Stromberg K, Hurley NE, Davis NL, Rueckert RR, Fleissner E (1974) Structural studies of avian myeloblastosis virus: comparison of polypeptides in virion and core component by dodecyl sulfatepolyacrylamide gel electrophoresis. J Virol 13: 513–528

    PubMed  CAS  Google Scholar 

  • Telesnitsky A, Goff SP (1993) RNase H domain mutations affect the interaction between Moloney murine leukemia virus reverse transcriptase and its primer-template. Proc Natl Acad Sei USA 90: 1276–1280

    CAS  Google Scholar 

  • Toh H, Ono M, Saigo K, Miyata T (1985) Retroviral protease-like sequence in the yeast transposon Ty1. Nature 315: 691–692

    CAS  Google Scholar 

  • Tomasselli AG, Heindrikson RL (1994) Specificity in retroviral protease: an analysis of viral and nonviral protein substrates. In: Kuo LC, Shafer JA (eds) Retroviral proteases. Academic, New York, pp 279–301 (Methods in enzymology, vol 241 )

    Google Scholar 

  • Tomasselli AG, Hui JO, Adams L, Chosay J, Lowery D, Greenberg B, Yem A, Deibel MR, Zurcher-Neely H, Heinrikson RL (1991) Actin, troponin c, Alzheimer amyloid precursor protein, and prointerleukin 1-beta as substrates of the protease from human immunodeficiency virus. J Biol Chem 266: 14548–14553.

    PubMed  CAS  Google Scholar 

  • Tözser, Weber IT, Gustchina A, Bläha In, Copeland TD, Louis JM, Oroszlan S (1992) Kinetic and modeling studies of S3-S3’, subsites of HIV proteinases. Biochemistry 31: 4793–4800

    Google Scholar 

  • Tritch RJ, Cheng YS, Yin FH, Erickson-Viitanen S (1991) Mutagenesis of protease cleavage sites in the human immunodeficiency virus type 1 gag polyprotein. J Virol 65: 922–930

    PubMed  CAS  Google Scholar 

  • Valverde V, Lemay P, Masson JM, Gay B, Boulanger P (1992) Autoprocessing of the human immunodeficiency virus type 1 protease precursor expressed in Escherichia coli from a synthetic gene. J Gen Virol 73: 639–651

    PubMed  CAS  Google Scholar 

  • Vogt VM, Eisenman R (1973) Identification of a large polypeptide precursor of avian oncornavirus proteins. Proc Natl Acad Sei USA 70: 1734–1738

    CAS  Google Scholar 

  • Vogt VM, Eisenman R, Diggelmann H (1975) Generation of avian myeloblastosis virus structural proteins by proteolytic cleavage of a precursor polypeptide. J Mol Biol 96: 471–493

    PubMed  CAS  Google Scholar 

  • Vogt VM, Burstein H, Skalka AM (1992) Proteolysis in the maturation of avian retroviruses does not require calcium. Virology 189: 771–774

    PubMed  CAS  Google Scholar 

  • von der Helm K (1977) Cleavage of Rous sarcoma viral polypeptide precursor into internal structural proteins in vitro involves viral protein p15. Proc Natl Acad Sei USA 74: 911–915

    Google Scholar 

  • Wallin M, Deinum J, Goobar L, Danielson UH (1991) Proteolytic cleavage of microtubule associated proteins by retroviral proteinases. J Gen Virol 71: 1985–1992

    Google Scholar 

  • Weber IT, Miller M, Jaskolski M, Leis J, Skalka AM, Wlodawer A (1989) Molecular modeling of the HIV-1 protease and its substrate binding site. Science 243: 928–931

    PubMed  CAS  Google Scholar 

  • Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, Lifson JD, Bonhoeffer S, Nowak M, Hahn BH, Saag MS, Shaw GM (1995) Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373: 117–122

    PubMed  CAS  Google Scholar 

  • Welker R, Janetzko A, Heuser A-M, Kräusslich H-G (1995) Targeting of intracisternal A-type particle Gag polyprotein to the plasma membrane leads to release of extracellular particles and induces polyprotein processing (submitted for publication )

    Google Scholar 

  • Wills JW, Craven RC (1991) Form function and use of retroviral Gag proteins. AIDS (Phil) 5: 639–654

    CAS  Google Scholar 

  • Wills JW, Craven RC, Achacoso JA (1989) Creation and expression of myristylated forms of Rous sarcom virus Gag protein in mammalian cells. J Virol 55: 79–85

    Google Scholar 

  • Wills JW, Craven RC, Weldon RA Jr, NelleTD, Erdie CR (1991) Suppression of retroviral MA deletions by the amino-terminal membrane binding domain of p60src. J Virol 65: 3804–3812

    Google Scholar 

  • Wills JW, Cameron CE, Wilson CB, Xiang Y, Bennett RP, Leis J (1994) An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J Virol 68: 6605–6618

    PubMed  CAS  Google Scholar 

  • Wlodawer A, Erickson JW (1993) Structure-based inhibitors of HIV-1 protease. In: Richardson CC (ed) Annual review of biochemistry, vol 62, Annual Reviews, Palo Alto, pp 543–585

    Google Scholar 

  • Wlodawer A, Miller M, Jaskölski M, Sathyanarayana BK, Baldwin E, Weber IT, Selk LM, Clawson L, Schneider J, Kent SBH (1989) Conserved folding in retroviral proteases: crystal structure of a synthetic HIV1 protease. Science 245: 616–621

    PubMed  CAS  Google Scholar 

  • Wondrak EM, Sakaguchi K, Rice WG, Kun E, Kimmel AR, Louis JM (1994) Removal of zinc is required for processing of the mature nucleocapsid protein of human immunodeficiency virus, typel, by the viral protease. J Biol Chem 269: 21948–21950

    PubMed  CAS  Google Scholar 

  • Yoshinaka Y, Luftig RB (1977) Murine leukemia virus morphogenesis: cleavage of P70 in vitro can be accompanied by a shift from a concentrically coiled internal strand (“immature”) to a collapsed (“mature”) form of the virus core. Proc Natl Acad Sei USA 74: 3446–3450

    CAS  Google Scholar 

  • Yu SF, Baldwin DN, Gwynn SR, Yendapalli S, Linial ML (1996) Human foamy virus replication: A pathway distinct from that of retroviruses and hepadnaviruses. Science 271: 1579–1582

    Google Scholar 

  • Zhang ZY, Poorman RA, Maggiora LL, Heinrikson RL, Kezdy FJ (1991) Dissociative inhibition of dimeric enzymes: kinetic characterization of the inhibition of HIV-1 protease by its carboxyl terminal tetrapeptide. J Biol Chem 266: 15591–15594

    PubMed  CAS  Google Scholar 

  • Zhang D, Zhang N, Wick MM, Byrn RA (1995) HIV type 1 protease activation of NF-kappa-B within T lymphoid cells. AIDS Res and Hum Retroviruses 11: 223–230

    CAS  Google Scholar 

  • Zybarth G, Carter C (1995) Domains upstream of the protease (PR) in human immunodeficiency virus type 1 Gag-Pol influence PR autoprocessing. J Virol 69: 3878–3884

    PubMed  CAS  Google Scholar 

  • Zybarth G, Kräusslich HG, Partin K, Carter C (1994) Proteolytic activity of novel human immunodeficiency virus type 1 proteinase proteins from a precursor with a blocking mutation at the N terminus of the PR domain. J Virol 68: 240–250

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogt, V.M. (1996). Proteolytic Processing and Particle Maturation. In: Kräusslich, HG. (eds) Morphogenesis and Maturation of Retroviruses. Current Topics in Microbiology and Immunology, vol 214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80145-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80145-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80147-1

  • Online ISBN: 978-3-642-80145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics