Skip to main content

LDV—measurements on wide gap instabilities in spherical Couette flow

  • Conference paper
Developments in Laser Techniques and Applications to Fluid Mechanics

Abstract

A new type of instability during the laminar-turbulent transition of a viscous incompressible fluid flow in the gap between two concentric spheres, where only the inner sphere rotates (spherical Couette flow), was detected. In case of two relatively wide gap widths (β = 0.33 and β = 0.5) it was found that the well-known Taylor-instability does not exist. At the stability threshold, where the laminar basic flow loses its stability, the first instability manifests itself as a break of the spatial symmetry and non-axisymmetric secondary waves with spiral arms appear. They spread from the pole to the equator. With increasing the Reynolds number above the critical one, the number of secondary waves with spiral arms decreases. Flow visualization studies and simultaneously laser-Doppler-velocimeter measurements show that the transition of the secondary wave flow with spiral arms is periodic and quasi-periodic before small scale turbulent structures occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andereck, C.D., Liu, S.S. and Swinney, H.L. (1986): Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech., vol. 164, 155–183

    Article  ADS  Google Scholar 

  • Bar-Yoseph, P., Solan, A., Hillen, R. and Roesner, K G. (1990): Taylor vortex flow between eccentric coaxialrotating spheres. Phys. Fluids A 2 (9), pp. 1564–1573

    Article  ADS  Google Scholar 

  • Bar-Yoseph, P., Roesner, KG. and Solan, A. (1992): Vortex breakdown in the polar region between rotating spheres. Phys. Fluids A 4 (8), pp. 1677–1686

    Article  ADS  Google Scholar 

  • Bartels, F. and Krause, E. (1979): Taylor-Vortices in Spherical Gaps. in: Laminar-Turbulent Transition IUTAM-Symp. Stuttgart, Springer

    Google Scholar 

  • Belyaev, Yu.N., Monakhov, A.A., Scherbakov, S.A. and Yavorskaya, I.M. (1984): Some routes to turbulence in spherical Couette Flow. in: Kozlov, V.V. (ed.): Laminar-TurbulentTransition. IUTAM-Symp. Novosibirsk/USSR, Springer

    Google Scholar 

  • Bonnet, J.P. & Alziary de Roquefort, T. (1976): Ecoulement entre deux spheres concentriques en rotation. J. Mec., vol. 13, pp. 373

    MathSciNet  ADS  Google Scholar 

  • Bratukhin, Yu. K. (1961): On the evaluation of the critical Reynolds number for the flow of fluid between two rotating spherical surfaces. PMM, vol.25, No.5, pp. 858–866

    Google Scholar 

  • Bühler, K. (1985): Strömungsmechanische Instabilitäten zäher Medien im Kugelspalt. VDI-Berichte, Reihe7: Strömungstechnik Nr.96

    Google Scholar 

  • Bühler, K. and Zierep, J. (1984): New secondary instabilities for high Re-number flow between two rotating spheres. in: Kozlov, V.V. (ed.): Laminar- TurbulentTransition. IUTAM-Symp. Novosibirsk/USSR, Springer, Berlin, Heidelberg, NewYork, Tokyo

    Google Scholar 

  • Bühler, K. and Zierep, J. (1986): Dynamical instabilities and transition to turbulence in spherical gap flows. in: Comte-Bellot, G. and Mathieu, J.: Advances in turbulence. Proc. 1st Europ. Turb. Conf., Lyon, France, 1–4 July, Springer, Berlin, Heidelberg, NewYork, London, Paris, Tokyo

    Google Scholar 

  • Buzug, Th., v. Stamm, J. and Pfister, G. (1992): Fractal dimensions of strange attractors obtained from the Taylor-Couette experiment. Phys. A, 191, 559

    Article  Google Scholar 

  • Buzug, Th., v. Stamm, J. and Pfister, G. (1993): Characterization of period-doubling scenarios in Taylor- Couette flow. Physical Review E, 47, no. 2, 1054–1065

    Article  ADS  Google Scholar 

  • Dennis, S.C.R. and Quartapelle, L. (1984): Finite difference solution to the flow between two rotating spheres. Comp. Fluids, vol. 12, pp. 77

    Article  ADS  MATH  Google Scholar 

  • Egbers, C.(1994): Zur Stabilität der Strömung imkonzentrischen Kugelspalt. Dissertation, Universität Bremen

    Google Scholar 

  • Egbers, C. and Rath, H.J. (1995): The existence of Taylor vortices and widegap instabilities in spherical Couette flow. Acta Mech. 111,3–4,125–140

    Google Scholar 

  • Fenstermacher, P.R., Swinney, H.L. and Gollub, J.P. (1979): Dynamic instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech., 94, parti, 103–128

    Article  ADS  Google Scholar 

  • Gardayskj, J. and Hrbek, J. (1989): Refraction Correction for LDV-Measurements in Circular Tubes within Rectangular Optical Boxes. DANTEC 8

    Google Scholar 

  • Kekoe, A.B. and Desai, P.V. (1987): Compensation for refractive-index variations in laser-Doppler-anemometry. Applied Optics 26,2582–2591

    Article  ADS  Google Scholar 

  • Khlebutin, G.N. (1968): Stability of fluid motion between a rotating and a stationary concentric sphere. Fluid Dynamics Vol.3, No.6, p.31–32

    Article  ADS  Google Scholar 

  • Markus, P.S. and Tuckerman, L.S. (1987a): Simulation of flow between concentric rotating spheres. Part 1. Steady states. J. Fluid Mech., vo1 185, 1–30

    Article  ADS  Google Scholar 

  • Markus, P.S. and Tuckerman, L.S. (1987b): Simulation of flow between concentric rotating spheres. Part 2. Transitions. J. Fluid Mech., vol l85, 31–65

    Google Scholar 

  • Meijering, A. (1993): Anwendung der Laser-Doppler-Anemometrie für Strömungsuntersuchungen im Spalt zwischen zwei konzentrisch rotierenden Kugeln. Diplomarbeit, Universität Bremen, FB 4, ZARM

    Google Scholar 

  • Munson, B.R. and Joseph, D.D. (1971a): Viscous incompressible flow between concentric rotating spheres. Parti: Basic flow. J. Fluid Mech. vol. 49, part2, pp. 289–303

    Article  ADS  MATH  Google Scholar 

  • Munson, B.R. and Joseph, D.D. (1971b): Viscous incompressible flow between concentric rotating spheres. Part2: Hydrodynamic stability. J. Fluid Mech. vol.49, part2, pp. 305–318

    Article  ADS  MATH  Google Scholar 

  • Munson, B.R. and Menguturk, M. (1975):Viscous incompressible flow between concentric rotating spheres. Part 3: Linear stability and experiments. J. Fluid Mech., vol. 69, 705–719

    Article  ADS  MATH  Google Scholar 

  • Nakabayashi, K. (1983): Transition of Taylor-Görtler vortex flow in spherical Couette flow. J. Fluid Mech., vol. 132, pp. 209–230

    Article  ADS  Google Scholar 

  • Nakabayashi, K. and Tsuchida, Y. (1988): Spectral study of the laminar-turbu- lent transition in spherical Couette flow. J. Fluid Mech., vol. 194, 101–132

    Article  ADS  Google Scholar 

  • Ritter, C.F. (1973): Berechnung der zähen, inkompressiblen Strömung im Spalt zwischen zwei konzentrischen, rotierenden Kugelflächen. Dissertation. Universität Karlsruhe

    Google Scholar 

  • Ruck, B. (1990) Lasermethoden in der Strömungsmeßtechnik. AT-Fachverlag, Stuttgart

    Google Scholar 

  • Sawatzki, O. und Zierep, J. (1970): Das Stromfeld im Spalt zwischen zwei konzentrischen Kugelflächen, von denen die innere rotiert. Acta Mech. 9, 13–35

    Article  Google Scholar 

  • Schrauf, G. (1986): The first instability in spherical Taylor-Couette flow. J. Fluid Mech., vol. 166, pp. 287–303

    Article  ADS  MATH  Google Scholar 

  • Sorokin, M.P., Khlebutin, G.N. and Shaidurov, G.F. (1966): Study of the motion of a liquid between two rotating spherical surfaces. J. Appl. Mech. and Tech. Phys., vol.6, pp.73–74

    ADS  Google Scholar 

  • v. Stamm, J., Buzug, Th. and Pfister, G. (1993): Frequency locking in axisymmetric Taylor-Couette flow. submitted to Physical Review E.

    Google Scholar 

  • Taylor, G.J. (1923): Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. A223, 289–293

    Google Scholar 

  • Waked, A.M. and Munson, B.R. (1978): Laminar-turbulent flow in spherical annulus. Trans. ASME I, J. Fluids Engng., vol. 100, pp. 281

    Article  Google Scholar 

  • Wimmer, M. (1976): Experiments on a viscous fluid flow between concentric rotating spheres. J. Fluid Mech., vol. 78, part2, 317–335

    Article  ADS  Google Scholar 

  • Wimmer, M. (1981): Experiments on the stability of viscous flow between two concentric rotating spheres. J. Fluid Mech., vol.103, 117–131

    Article  ADS  Google Scholar 

  • Yakushin, V.I. (1970): Instability of the motion of a liquid between two rotating spherical surfaces. Fluid Dynamics, vol.5, no.2, p. 660–661

    ADS  Google Scholar 

  • Yavorskaya, I.M., Belyaev, Yu.N. and Monakhov, A.A. (1975): Experimental study of a spherical Couette flow. Sov. Phys. Dokl., vol. 20, 4, 256–258

    Google Scholar 

  • Yavorskaya, I.M., Belyaev, Yu.N., Monakhov, A.A., Astaf’eva, N.M, Scherbakov, S.A. and Vvedenskaya, N.D. (1980): Stability, non-uniqueness and transition to turbulence in the flow between two rotating spheres. IUTAM-Symposium, Toronto

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Egbers, C., Rath, H.J. (1996). LDV—measurements on wide gap instabilities in spherical Couette flow. In: Adrian, R.J., Durão, D.F.G., Durst, F., Heitor, M.V., Maeda, M., Whitelaw, J.H. (eds) Developments in Laser Techniques and Applications to Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79965-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79965-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79967-9

  • Online ISBN: 978-3-642-79965-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics